Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86189
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorJun-Chen Chenen
dc.contributor.author陳俊辰zh_TW
dc.date.accessioned2023-03-19T23:41:16Z-
dc.date.copyright2022-09-05
dc.date.issued2022
dc.date.submitted2022-09-02
dc.identifier.citation1. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076-3080 (2010). 2. H. C. Yoon, H. Kang, S. Lee, J. H. Oh, H. Yang, and Y. R. Do, “Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance,” ACS Appl. Mater. Interfaces 8(28), 18189-18200 (2016). 3. C. Du, Z. Ma, J. Zhou, T. Lu, Y. Jiang, P. Zuo, H. Jia, and H. Chen, “Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption,” Appl. Phys. Lett. 105(7), 071108 (2014). 4. X. Zhao, B. Tang, L. Gong, J. Bai, J. Ping, and S. Zhou, “Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes,” Appl. Phys. Lett. 118(18), 182102 (2021). 5. J. H. Oh, K. H. Lee, H. C. Yoon, H. Yang, and Y. R. Do, “Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors,” Opt. Express 22(S2), A511-A520 (2014). 6. H. V. Han, H. Y. Lin, C. C. Lin, W. C. Chong, J. R. Li, K. J. Chen, P. Yu, T. M. Chen, H. M. Chen, K. M. Lau, and H. C. Kuo, “Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology,” Opt. Express 23(25), 32504-32515 (2015). 7. T. Förster, “Energy transport and fluorescence,” Naturwissenschaften 33, 166-175 (1946). 8. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642-646 (2004). 9. J. Yu, L. Wang, D. Yang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Improving the internal quantum efficiency of green InGaN quantum dots through coupled InGaN/GaN quantum well and quantum dot structure,” Appl. Phys. Express 8(9), 094001 (2015). 10. Y. P. Chen, C. C. Ni, R. N. Wu, S. Y. Kuo, Y. C. Su, Y. Y. Huang, J. W. Chen, Y. C. Hsu, S. H. Wu, C. Y. Chen, P. H. Wu, Y. W. Kiang, and C. C. Yang, “Combined effects of surface plasmon coupling and Förster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on an InGaN/GaN quantum-well nanodisk structure,” Nanotechnology 32(13), 135206 (2021). 11. C. C. Ni, S. Y. Kuo, Z. H. Li, S. H. Wu, R. N. Wu, C. Y. Chen, and C. C. Yang, “Förster resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots,” Opt. Express 29(3), 4067-4081 (2021). 12. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602-606 (2010). 13. C. Krishman, M. Brossard, K.-Y. Lee, J.-K. Huang, C.-H. Lin, H.-C. Kuo, M. D. B. Charlton, and P. G. Lagoudakis, “Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield,” Optica 3(5), 503-509 (2016 ). 14. Z. Zhuang, X. Guo, B. Liu, F. Hu, Y. Li, T. Tao, J. Dai, T. Zhi, Z. Xie, P. Chen, D. Chen, H. Ge, X. Wang, M. Xiao, Y. Shi, Y. Zheng, and R. Zhang, “High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes,” Adv. Funct. Mater. 26(1), 36-43 (2016). 15. M. Athanasiou, P. Papagiorgis, A. Manoli, C. Bernasconi, N. Poyiatzis, P.-M. Coulon, P. Shields, M. I. Bodnarchuk, M. V. Kovalenko, T. Wang, and G. Itskos, “InGaN nanohole arrays coated by lead halide perovskite nanocrystals for solid-state lighting,” ACS Appl. Nano Mater. 3(3), 2167-2175 (2020). 16. R. Wan, G. Li, X. Gao, Z. Liu, J. Li, X. Yi, N. Chi, and L. Wang, “Nanohole array structured GaN-based white LEDs with improved modulation bandwidth via plasmon resonance and non-radiative energy transfer,” Photon. Res. 9(7), 1213-1217 (2021). 17. Z. Du , D. Li, W. Guo, F. Xiong, P. Tang, X. Zhou, Y. Zhang, T. Guo, Q. Yan, and J. Sun, “Quantum dot color conversion efficiency enhancement in micro-light-emitting diodes by non-radiative energy transfer,” IEEE Electron Dev. Lett. 42(8), 1184-1187 (2021). 18. A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B. 66, 153305 (2002). 19. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater. 3, 601 (2004). 20. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253 (2008). 21. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205 (2010). 22. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cu, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979 (2010). 23. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946). 24. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914 (2011). 25. C. Y. Su, C. H. Lin, Y. F. Yao, W. H. Liu, M. Y. Su, H. C. Chiang, M. C. Tsai, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode,” Opt. Express 25, 21526-21536 (2017). 26. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96, 261104 (2010). 27. C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23, 8150 (2015). 28. C. J. Cai, Y. T. Wang, C. C. Ni, R. N. Wu, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Emission behaviors of colloidal quantum dots linked onto synthesized metal nanoparticles,” Nanotechnology 31, 095201 (2020). 29. Y. T. Wang, C. W. Liu, P. Y. Chen, R. N. Wu, C. C. Ni, C. J. Cai, Y. W. Kiang, and C. C. Yang, “Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode,” Opt. Lett. 44, 5691-5694 (2019). 30. W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Simulation study on light color conversion enhancement through surface plasmon coupling,” Opt. Express 27, A629-A642 (2019). 31. C. H. Lin, H. C. Chiang, Y. T. Wang, Y. F. Yao, C. C. Chen, W. F. Tse, R. N. Wu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Efficiency enhancement of light color conversion through surface plasmon coupling,” Opt. Express 26, 23629 (2018). 32. Y. Y. Huang, Z. H. Li, Y. C. Lai, J. C. Chen, S. H. Wu, S. Yang, Y. Kuo, C.C. Yang, T. C. Hsu, and C. L. Lee, 'Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in the surface nano-holes of a blue-emitting light-emitting diode,' Opt. Express 30, 31322-31335 (2022). 33. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86189-
dc.description.abstract本研究利用數值模擬方法探討在氮化鎵量子井結構的表面奈米孔洞內量子點的發光、量子點之間的福斯特共振能量轉換以及量子井和量子點間的福斯特共振能量轉換行為。此外,我們也將銀奈米顆粒置入奈米孔洞中和量子井及奈米孔洞內的量子點產生表面電漿子耦合。我們的結果顯示,藉由奈米孔洞結構產生的奈米腔體效應可以增強量子點的發光與福斯特共振能量轉換效率,也可增強量子井和量子點之間的福斯特共振能量轉換效率,而表面電漿子耦合可以更進一步地加強這些作用,這些作用都和極化方向有高度的相依性。另外,我們發現量子井偶極子與置入淺洞的量子點藉由表面的銀奈米顆粒產生的表面電漿子耦合也可以增強量子井及量子點的福斯特共振能量轉換效率。為此,我們必須仔細設計位於表面的銀奈米顆粒之幾何形狀才能達到此增強效果。我們所觀察的發光和福斯特共振能量轉換效率之增強效果係透過和由光阻與氮化鎵所組成的半空間結構的控制組及由光阻為材料的均勻空間結構組成的對照組比較後所得到的結論。在計算上,我們將施體的強度增強效率乘上受體的輻射增強效率可以得到福斯特共振能量轉換的增強效率。zh_TW
dc.description.abstractIn this research, numerical simulations on the behaviors of quantum dot (QD) emission, Förster resonance energy transfer (FRET) between QDs, and FRET from quantum well (QW) into QD are performed when QDs are inserted into a surface nano-hole fabricated on a GaN QW template. Meanwhile, an Ag nanoparticle (NP) is also inserted into the surface nano-hole for inducing the surface plasmon (SP) coupling with the QW and inserted QD. The nanoscale-cavity effect produced by the nano-hole structure enhances the emission and FRET efficiencies of the QDs, and the FRET from QW into QD. The SP coupling can further enhance the efficiencies of those processes. High polarization dependencies are observed in all those processes. Meanwhile, a surface Ag NP for producing the SP couplings with an embedded QW-dipole and a QD inserted into a shallow hole can enhance the FRET from the QW into the QD. However, such an enhancement requires a careful design for the surface Ag NP geometry. The enhancements of emission and FRET are demonstrated through the comparisons with a control structure of two half-spaces and a reference structure of a homogeneous space. The FRET enhancement is obtained by multiplying the donor intensity enhancement and the acceptor radiated power enhancement.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:41:16Z (GMT). No. of bitstreams: 1
U0001-0908202210381700.pdf: 6924981 bytes, checksum: ba0bc620d466565f77aa691241239b61 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 致謝 ii 中文摘要 iii Abstract iv Contents v List of Figure vii List of Table xvi Chapter 1 Introduction 1 1.1 Photon down-conversion and Förster resonance energy transfer 1 1.2 Quantum dots in surface nano-holes for enhancing Förster resonance energy transfer 2 1.3 Surface plasmon coupling enhanced color conversion 2 1.4 Experimental study results --- Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in surface nano-holes of a blue-emitting light-emitting diode [32] 3 1.5 Research motivations 5 1.6 Thesis structure 6 Chapter 2 Simulation Structures and Methods 12 2.1 Simulation structures 12 2.2 Simulation method 14 Chapter 3 Light Emission and Förster Resonance Energy Transfer in a Nano-hole on a GaN Template 19 3.1 Emission behavior of a quantum dot in a nano-hole 19 3.2 Förster resonance energy transfer from a quantum dot into another in a nano-hole 22 3.3 Behavior of surface plasmon coupling between an Ag nanoparticle and a quantum dot in a nano-hole 25 3.4 Surface plasmon coupling effect on Förster resonance energy transfer in a nano-hole 27 3.5 Effects on emission and Förster resonance energy transfer in reducing the diameter of nano-hole 28 Chapter 4 Förster Resonance Energy Transfer and Surface Plasmon Coupling in a Nano-hole on a Quantum-well Template 67 4.1 Förster resonance energy transfer from a quantum-well dipole into a quantum dot in a deep nano-hole 67 4.2 Surface plasmon coupling effect on the Förster resonance energy transfer from a quantum-well dipole into a quantum dot in a deep nano-hole 69 4.3 Surface plasmon coupling of a quantum-well dipole with an Ag nanoparticle in a deep nano-hole 72 4.4 Surface plasmon coupling effect on the Förster resonance energy transfer from a quantum-well dipole into a quantum dot in a shallow nano-hole 73 4.5 Surface plasmon coupling effect on a quantum well through an Ag nanoparticle in a shallow nano-hole 76 Chapter 5 Hot-spot Enhancement of Photon Down-conversion in Surface Plasmon Coupling 119 5.1 Effects of the surface plasmon coupling with single localized surface plasmon resonance feature – Localized surface plasmon resonance at a short wavelength 119 5.2 Effects of the surface plasmon coupling with single localized surface plasmon resonance feature – Localized surface plasmon resonance at a long wavelength 121 Chapter 6 Discussions 136 6.1 Far-field and near-field effects 136 6.2 Differences between experimental and simulation results 136 Chapter 7 Conclusions 138 References 139
dc.language.isoen
dc.subject表面奈米孔洞zh_TW
dc.subject福斯特共振能量轉換zh_TW
dc.subject表面電漿子耦合zh_TW
dc.subjectSurface Plasmon Couplingen
dc.subjectSurface Nanoscale Holeen
dc.subjectFörster Resonance Energy Transferen
dc.title在量子井結構上表面奈米孔洞內的發光、福斯特共振能量轉換與表面電漿子耦合行為的模擬研究zh_TW
dc.titleSimulation Study of the Behaviors of Light Emission, Förster Resonance Energy Transfer, and Surface Plasmon Coupling in a Surface Nanoscale Hole on a Quantum-well Structureen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋(Jian-Jang Huang),陳奕君(I-Chun Cheng),林建中(Chien-Chung Lin),郭仰(Yang Kuo)
dc.subject.keyword福斯特共振能量轉換,表面電漿子耦合,表面奈米孔洞,zh_TW
dc.subject.keywordFörster Resonance Energy Transfer,Surface Plasmon Coupling,Surface Nanoscale Hole,en
dc.relation.page143
dc.identifier.doi10.6342/NTU202202190
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
dc.date.embargo-lift2022-09-05-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0908202210381700.pdf6.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved