Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86182
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孫霖(Sun-Lin Chung)
dc.contributor.authorYa-Jung Hsuen
dc.contributor.author徐雅容zh_TW
dc.date.accessioned2023-03-19T23:40:53Z-
dc.date.copyright2022-09-12
dc.date.issued2022
dc.date.submitted2022-09-05
dc.identifier.citationAdam, J., Green, T., 2006. Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152, 1-17. An, A. R., Choi, S. H., Yu, Y., Lee, D. C., 2017. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam. Lithos, 272-273, 192-204. Barberi, F., Ferrara, G., Santacrocs, R., Treuil. M., Varet, J., 1975. A transitional basalt-pantellerite sequence of fractional crystallization, the Boina centre (Afar Rift, Ethiopia). Journal of Petrology, 16, 22-56. Barr, S. M., Charusiri, P., 2011. Volcanic rocks. In: Ridd, M. F., Barber, A. J. and Crow, M. J. (Eds.), The Geology of Thailand, Geological Society, London, 415-439. Barr, S. M., Cooper, M. A., 2013. Late Cenozoic basalts and gabbro in the subsurface in the Phetchabun Basin, Thailand: Implications for the southeast Asian Volcanic Province. Journal of Asian Earth Sciences, 76, 169-184. Barr, S. M., James, D., 1990. Trace element characteristics of Upper Cenozoic basaltic rocks of Thailand, Kampuchea and Vietnam. Journal of Asian Earth Sciences, 4, 232-242. Barr, S. M., MacDonald, A. S., 1978. Geochemistry and petrogenesis of late Cenozoic alkaline basalts of Tailand. Geological Society of Malaysia Bulletin, 10, 21-48. Barr, S. M., MacDonald, A. S., 1981. Geochemistry and geochronology of Late Cenozoic basalts of Southeast Asia. Geological Society of America Bulletin, 92, 1069-1142. Bellot, N., Boyet, M., Doucelance, R., Bonnand, P., Savov, I. P., Plank, T., Elliot, T., 2008. Origin of negative cerium anomalies in subduction-related volcanic samples: Constraints from Ce and Nd isotopes. Chemical Geology, 500, 46-63. Bignell, J. D., Snelling, N. J., 1977. K-Ar ages on some basic igneous rocks from peninsular Malaysia and Thailand. Geological Society of Malaysia Bulletin, 8, 93-98. Bizimis, M., Salters, V. J. M., Dawson, J. B., 2003. The brevity of carbonatite sources in the mantle: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 145, 281-300. Bunopas, S., Vella, P., 1992. Geotectonic and geologic evolution of Thailand. In: Piancharoen C. (Eds.), Proceedings of the National Conference on Geologic Resources of Thailand: Potential for Future Development, Department of Mineral Resource, Ministry of Industry, Bangkok, Thailand, 209-228. Camp, V. E., 1995. Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River basalt source region. Geology, 23, 38-435. Carbonnel, J. P., Duplaix, S., Selo, M., 1972. La me´thode des traces de fission de l’Uranium applique´e a la ge´ochronologie. Datation du magmatisme Re´cent de l’Asie de sud-est, Revu de Ge´ographie Physique et de Ge´ologie Dynamique, 14, 29-46. Carlson, R. W., Hart, W. K., 1988. Flood basalt volcanism in the northwestern united states. In: McDougal, J. D. (Eds.), Continental Basalt, 3, 35-61. Castillo, P., 1988. The Dupal anomaly as a trace of the upwelling lower mantle. Nature, 336, 667-670. Charusiri, P. 1989. Lithophile metallogenic epochs of Thailand: geological and geochronological syntheses. Unpublished PhD thesis, Queen’s University, Kingston, Ontario, Canada. Chen, H., Li, Z., Luo, Z., Ojo, A. O., Xie, J., Bao, F., Wang, L., Tu, G., 2021. Crust and upper mantle structure of the South China Sea and adjacent areas from the joint inversion of ambient noise and earthquake surface wave dispersions. Geochemistry, Geophysics, Geosystems, 22, 3. Chen, L. H., Zeng, G., Jiang, S. Y., Hofmann, A. W., Xu, X. S., 2009. Sources of Anfengshan basalts: subducted lower crust in the Sulu UHP belt, China. Earth and Planetary Science Letters, 286, 426-435. Chonglakmani, C., 2011. Triassic. In: Ridd, M. F., Barber, A. J., Crow, M. J. (Eds.), The Geology of Thailand, Geological Society, London, 137-150. Chualaowanich, T., Saisuthichai, D., Sarapanchotewittaya, P., Charusiri, P., Sutthirat, C., Lo, C. H., Lee, T. Y., Yeh, M. W., 2008. New 40Ar/39Ar ages of some Cenozoic basalts from the east and northeast of Thailand. In: Choowong, M., Thitimakorn, T. (Eds.), Proceedings of the International Symposia on Geoscience Research and Environments of Asian Terranes (GREAT 2008), 4th IGCP 516 and 5th APSEG, Bangkok, 225-229. Chung, S. L., Sun, S. S., Tu, K., Chen, C. H., Lee, C. Y., 1994. Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension. Chemical Geology, 112, 1-20. Chung, S. L., Lan, C. Y., Lo, C. H., Lee, T. Y., Wang, P. L., Hoa, T. T., Thanh, H. H., Anh, T. T., 1998. The Indosinian orogeny and closure of eastern Paleo-Tethys: amalgamation between the Indochina and South China blocks in the early Triassic. Ninth Regional Congress on Geology, Mineral and Energy resources of Southeast Asia Abstracts. Chung, S. L., Wang, K. L., Crawford, A. J., Kamenetsky, V. S., Chen, C. H., Lan, C. Y., Chen, C. H., 2001. High-Mg potassic rocks from Taiwan: Implications for the genesis of orogenic potassic lavas. Lithos, 59, 153-170. Class, C., Lehnert, K., 2012. PetDB Expert MORB (Mid-Ocean Ridge Basalt) Compilation, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.1594/IEDA/100060. Accessed 2022-05-16. Cobbing, E. J., 2011. Granitic rocks. In: Ridd, M. F., Barber, A. J., Crow, M. J. (Eds.), The Geology of Thailand, Geological Society, London, 441-457. Connor, C.B., Conway, F.M., 2000. Basaltic volcanic fields. In: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes, Academic Press, 331-343. Dasgupta, R., Hirschmann, M. M., Stalker, K., 2006. Immiscible transition from carbonaterich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. Journal of Petrology, 47, 647-671. Dasgupta, R., Jackson, M. G., Lee, C. T., 2010. Major element chemistry of ocean island basalts–conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science Letters, 289, 377-392. Dupuy, C., Liotard, J. M., Dostal, J., 1992. Zr/Hf fractionation in intraplate basaltic rocks: Carbonate metasomatism in the mantle source. Geochimica et Cosmochimica Acta, 56, 2417-2423. Eby, G. N., 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26, 115-134. Eby, G. N., 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20, 641-644. Ekicic, T., Macpherson, C. G., Otlu, N., 2012. Polybaric melting of a single mantle source during the Neogene Siverek phase of the Karacadağ Volcanic Complex, SE Turkey. Lithos, 146-147, 152-163. Elderfield, H., Greaves, M. J., 1981. Negative cerium anomalies in the rare earth element patterns of oceanic ferromanganese nodules. Earth and Planetary Science Letters, 55, 163-170. Elkins, L. J., Gaetani, G. A., Sims, K. W. W., 2008. Partitioning of U and Th during garnet pyroxenite partial melting: Constraints on the source of alkaline ocean island basalts. Earth and Planetary Science Letters, 265, 270-286. Ernst, R. E., Buchan, K. L., 2003. Recognizing mantle plumes in the geological record. Annual Review of Earth and Planetary Sciences, 31, 469-523. Farmer, G. L., 2014. Continental basaltic rocks. In: Holland, H. D. and Turekian, K.K. (Eds.), Treatise on Geochemistry, Elsevier Science, 4, 75-110. Faure, G., 1986. Principles of isotope geology, John Wiley and Sons, New York, 589. Faure, G., 2001. Origin of Igneous Rocks: The Isotopic Evidence. Springer Berlin, Heidelberg. Fitton, J. G., James, D., 1986. Basic volcanism associated with intraplate linear features. Philosophical Transactions of the Royal Society of London, 317, 253-266. Foland, K. A., Allen, J. C., 1991. Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New England, USA. Contributions to Mineralogy and Petrology, 109, 195-211. Frey, F. A., Green, D.H., Roy, S. D., 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilites from south eastern Australia utilizing geochemical and experimental petrologic data. Journal of Petrology, 19, 463-513. Frost, C. D., Frost, B. R., 1997. Reduced rapakivi-type granites: The tholeiite connection. Geology, 25, 647-650. Green, D. H., Ringwood, A. E., 1967. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica et Cosmochimica Acta, 31, 767-833. Gudfinnsson, G. H., Presnall, D. C., 2005. Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa. Journal of Petrology, 46, 1645-1659. Hansen, B.T., Wemmer, K., 2011. Age and evolution of the basement rocks in Thailand. In: Ridd, M. F., Barber, A. J., Crow, M. J. (Eds.), The Geology of Thailand, Geological Society, London, 19-32. Hauri, E. H., Wagner, T. P., Grove, T. L., 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117, 149-166. Hildreth , E. W., Hallida, A. N., Christiansen ,R. L., 1991. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field. Journal of Petrology, 32, 63-137. Hirose, K., 1997. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophysical Research Letters, 24, 2837-2840. Hirschmann, M. M., Kogiso, T., Baker, M. B., Stolper, E. M., 2003. Alkalic magmasgenerated by partial melting of garnet pyroxenite. Geology, 31, 481-484. Hoang, N., Flower, M., 1998. Petrogenesis of Cenozoic basalts from Vietnam: Implication for origin of a “Diffuse Igneous Province”. Journal of Petrology, 39, 369-395. Hofmann, A. W., 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385, 219-229. Horn, I., Foley, S. F., Jackson, S. E., Jenner, G. A., 1994. Experimentally determined partitioning of high field strength- and selected transition elements between spinel and basaltic melt. Chemical Geology, 117, 193-218. Hu, X., Garzanti, E., Moore, T., Raffi, I., 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology, 43, 859-862. Hu, X., Garzanti, E., Wang, J., Huang, W., An, W., Webb, A., 2016. The timing of India-Asia collision onset - Facts, theories, controversies. Earth Science Reviews, 160, 264-299. Humphreys, E. R., Niu, Y., 2009. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos, 112, 118-136. Intasopa, S. B., Dunn, T., Lambert, R. St J., 1995. Geochemistry of Cenozoic basaltic and silicic magmas in the central portion of the Loei-Phetchabun volcanic belt, Lop Buri, Thailand. Canadian Journal of Earth Sciences, 32, 393-409. Intasopa, S., 1993. Petrology and Geochronology of the Volcanic Rocks of the Central Thailand Volcanic Belt. Unpublished PhD thesis, University of New Brunswick, Fredericton, New Brunswick, Canada. Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Science, 8, 523-548. Irving, A. J., Frey, F. A., 1978. Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochimica et Cosmochimica Acta, 42, 771-787. Ivanov, A.V., 2007. Evaluation of different models for the origin of the Siberian Traps.In: Foulger, G.R. and Jurdy D.M. (Eds.), Plates, Plumes and Planetary Processes, Geological Society of America Special Paper, 430, 669-691. Jochum, K. P., Seufert H. M., Spettel, B., Palme, H., 1986. The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochimica et Cosmochimica Acta, 50, 1173-1183. Johnson, K. T. M., 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contributions to Mineralogy and Petrology, 133, 60-68. Jung, C., Jung, S., Hoffer, E., Berndt, J., 2006. Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany. Journal of Petrology, 47, 1637-1671. Kempton, P. D., Fitton, J. G., Hawkesworth, C. J., Ormerod, D. S., 1991. Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States. Journal of Geophysical Research, 96, 13713-13735. Kerr, A., Fryer, B. J., 1993. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chemical Geology, 104, 39-60. King, S. D., Anderson, D. L., 1995. An alternative mechanism of flood basalt formation. Earth and Planetary Science Letters, 136, 269-279. Kogiso, T., Hirschmann, M. M., 2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth and Planetary Science Letters, 249, 188-199. Kogiso, T., Hirschmann, M. M., Frost, D. J., 2003. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters, 216, 603-617. Koppers, A. A. P., 2002. ArArCALC-software for 40Ar/39Ar age calculations. Computers and Geosciences, 28, 605-619. Kovács, I., Patkó, L., Liptai, N., Lange, T. P., Taracsák, Z., Cloetingh, S. A. P. L., Török, K., Király, E., Karátson, D., Biró, T., Kiss, J., Pálos, Zs., Aradi, L. E., Falus, Gy., Hidas, K., Berkesi, M., Koptev, A., Novák, A., Wesztergom, V., Fancsik, V., Szabó, Cs., 2020. The role of water and compression in the genesis of alkaline basalts: Inferences from the Carpathian-Pannonian region. Lithos, 354-355, 105323. Lambart, S., Laporte, D., Schiano, P., 2013. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints. Lithos, 160-161, 14-36. Langmuir, C. H., Klein, E. M., Plank, T., 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In: Morgan, J. P., Blackman, D. K., Sinton, J. M. (Eds.), Mantle Flow and Melt Generation at Mid-Ocean Ridges, Geophysical Monograph, 71, American Geophysical Union, Washington, 183-280. Le Bas, M. J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750. Le Roux, V., Dasgupta, R., Lee, C. T. A., 2011. Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 307, 395-408. Lee, C. T., 2016. Geochemical classification of elements. In: White, W. M. (Eds.), Encyclopedia of Geochemistry, 575. Lee, J. K. W., 2014. Ar-Ar and K-Ar dating. In: Rink, W. J. and Thompson, J. W. (Eds.), Encyclopedia of Scientific Dating Methods, Springer Netherlands, Dordrecht. Lemarchand, F., Villemant, B., Calas, G., 1987. Trace element distribution coefficients in alkaline series. Geochimica et Cosmochimica Acta, 51, 1071-1081. Levinson, A. A., Cook, F. A., 1994. Gem corundum in alkali basalt: Origin and occurrence. Gems and Gemology, 30, 253-262. Li, C. F., Chu, Z. Y., Guo, J. H., Li, Y. L., Yang, Y. H., Li, X. H., 2015. A rapid single column separation scheme for high-precision Sr–Nd–Pb isotopic analysis in geological samples using thermal ionization mass spectrometry. Analytical Methods, 7, 4793-4802. Li, C. F., Wang, X. C., Guo, J. H., Chua, Z. Y., Fenga, L. J., 2016. Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry. Journal of Analytical Atomic Spectrometry, 31, 1150-1159. Lin, T. H., Lo, C. H., Chung, S. L., Hsu, F. J., Yeh, M. W., Lee, T. Y., Ji, J. Q.. Wang, Y. Z., Liu, D., 2009. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 34, 674-685. Lin, Y. L., Yeh, M. W., Lee, T. Y., Chung, S. L., Iizuka, Y., Charusiri, P., 2013. First evidence of the Cambrian basement in Upper Peninsula of Thailand and its implication for crustal and tectonic evolution of the Sibumasu terrane. Gondwana Research, 24, 1031-1037. Liu, Y. S., Gao, S., Kelemen, P. B., Xu, W. L., 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica et Cosmochimica Acta, 72, 2349-2376. Lugmair, G. W., Marti, K., 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39, 349-357. Mahood, G. A., Stimac, J. A., 1990. Trace-element partitioning in pantellerites and trachytes. Geochimica et Cosmochimica Acta, 54, 2257-2276. Marchev, P., Raicheva, R., Downes, H., Vaselli, O., Chiaradia, M., Moritz, R., 2004.Compositional diversity of Eocene-Oligocene basaltic magmatism in the Eastern Rhodopes, SE Bulgaria: Implications for genesis and tectonic setting. Tectonophysics, 393, 301-328. McKenzie, D. A. N., O'Nions, R. K., 1995. The source regions of ocean island basalts. Journal of Petrology, 36, 133-159. Mckenzie, D., O'nions, R. K., 1992. Corrections to 'Partial melt distributions from inversion of rare earth element concentrations'. Journal of Petrology, 33, 1453. Meesook, A., Saengsrichan, W., 2011. Jurassic. In: Ridd, M. F., Barber, A. J. and Crow, M. J. (Eds.), The Geology of Thailand, Geological Society, London, 151-168. Meesook, A., 2011. Cretaceous. In: Ridd, M. F., Barber, A. J. and Crow, M. J. (Eds.), The Geology of Thailand, Geological Society, London, 169-184. Metcalfe, I., 1998. Palaeozoic and Mesozoic geological evolution of the SE Asianregion: multidisciplinary constraints and implications for biogeography. In: Hall, R. and Holloway, J. D. (Eds.), Biogeography and Geological Evolution of SE Asia, Backhuys Publishers, 25-41. Metcalfe, I., 2013. Tectonic evolution of the Malay Peninsula. Journal of Asian Earth Sciences, 76, 195-213. Mickein, A., 1997. U-Pb-, Rb-Sr- und K-Ar-Untersuchungen zur metamorphen Entwicklung und Altersstellung des 'Präkambriums' in NW-Thailand. Göttinger Arbeiten zur Geologie und Paläontologie, 73, 1-83. Miller, C., Schuster, R., Klotzli, U., Frank, W., Purtscheller, F., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40, 1399-1424. Mingram, B., Trumbull, R. B., Littman, S., 2000. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for mixing of crust and mantle-derived components. Lithos, 54, 1-22. Morley, C. K., Charusiri, P., Watkinson, I. M., 2011. Structural geology of Thailand during the Cenozoic. In: Ridd, M. F., Barber, A. J. and Crow, M. J. (Eds.), The Geology of Thailand, Geological Society, London, 273-334. Mukasa, S. B., Fischer, G. M., Barr, S. M., The character of the subcontinental mantle in Southeast Asia: Evidence from isotopic and elemental compositions of extension-related Cenozoic basalts in Thailand. In: Basu, A. and Hart, S. (Eds.), Geophysical Monograph Series, 95, 223-252. Nielsen, R. L., Gallahan, W. E., Newberger, F., 1992. Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contributions to Mineralogy and Petrology, 110, 488-499. Niu, Y., O'Hara, M. J., 2003. Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research, 108, 2209-2228. Pang, K. N., Chung, S. L., Zarrinkoub, M. H., Mohammadi, S. S., Yang, H. M., Chu, C. H., Lee, H. Y., Lo, C. H., 2012. Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut-Sistan region, eastern Iran. Chemical Geology, 306-307, 40-53. Paster, T. P., Schauwecker, D. S., Haskin, L. A., 1974. The behavior of some trace elements during solidification of the Skaergaard layered series. Geochimica et Cosmochimica Acta, 38, 1549-1577. Pertermann, M., Hirschmann, M. M., 2003. Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. Journal of Petrology, 44, 2173-2201. Pilet, S., Baker, M.B., Stolper, E.M., 2008. Metasomatized lithosphere and the origin of alkaline Lavas. Science, 320, 916-919. Pilet, S., Hernandez, J., Bussy, F., Sylvester, P. J., 2004. Short-term metasomatic control of Nb/Th ratios in the mantle sources of intraplate basalts. Geology, 32, 113-116. Pilet, S., Hernandez, J., Sylvester, P., Poujol, M., 2005. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth and Planetary Science Letters, 236, 148-166. Promprated, P., Taylor, L. A., 2003. Petrochemistry of mafic granulite xenoliths from the chantaburi basaltic field: Implications for the nature of the lower crust beneath Thailand. International Geology Review, 45, 383-406. Promprated, P., Taylor, L. A., Snyder, G. A., 1999. Petrochemistry of the mantle beneath Thailand: Evidence from peridotite xenoliths. International Geology Review, 41, 506-530. Promwongnan, S., Sutthirat, C., 2019. Mineral inclusions in ruby and sapphire from the Bo Welu gem deposit in Chanthaburi, Thailand. Gems and Gemology, 55, 354-369. Prytulak, J., Elliott, T., 2007. TiO2 enrichment in ocean island basalts. Earth and Planetary Science Letters, 263, 388-403. Pubellier, M., Morley, C. K., 2014. The basins of Sundaland (SE Asia): Evolution and boundary conditions. Marine and Petroleum Geology, 58, 555-578. Ridd, M. F., 2011. Lower Palaeozoic. In: Ridd, M. F., Barber, A. J., Crow, M. J. (Eds.), The Geology of Thailand, Geological Society, London, 33-51. Robert, U., Foden, J., Varne, R. 1992. The Dodecanese Province, SE Aegean: A model for tectonic control on potassic magmatism. Lithos, 28, 241-260. Robinson, J. A. C., Wood, B. J., Blundy, J. D., 1998. The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth and Planetary Science Letters, 155, 97-111. Rodolfo, K. S., 1969. Bathymetry and marine geology of the Andaman basin and tectonic implications for Southeast Asia. Bulletin of the Geological Society of America, 80, 1203-1230. Rogers, N., 2015. The composition and origin of magmas. In: Sigurdsson, H., Houghton, B., Nutt, S. R., Rymer, H., Stix, J. (Eds.), The encyclopedia of volcanoes, Academic Press, 93-112. Rudnick, R. L., Gao, S., 2014. Composition of the continental crust. In: Holland, H. D. and Turekian, K.K. (Eds.), Treatise on Geochemistry, Elsevier Science, 4, 1-51. Salters, V. J. M., Longhi, J. E., Bizimis, M., 2002. Near solidus trace element partitioning at pressures up to 3.4 GPa. Geochemistry Geophysics Geosystems, 3, 1-23. Sasada, S., Ratanasthien, B., Soponpongpipat, P., 1987. K/Ar ages of Lampang basalt, northern Thailand. Bulletin of the Geological Survey Japan, 38, 13-20. Searle, M. P., Morley, C. K., 2011. Tectonic and thermal evolution of Thailand in the regional context of SE Asia., In: Ridd, M. F., Barber, A. J., Crow, M. J., The Geology of Thailand, Geological Society, London, 539-571. Searle, M. P., Whitehouse, M. J., Robb, L. J., Ghani, A. A., Hutchison, C. S., Sone, M., Ng, S. W. P., Roselee, M.H., Chung, S. L., Oliver, G. J. H., 2012. Tectonic evolution of the Sibumasu-Indochina terrane collision zone in Thailand and Malaysia: Constraints from new U-Pb zircon chronology of SE Asian tin granitoids. Journal of the Geological Society, 169, 489-500. Self, S., Schmidt, A., Mather, T. A., 2014. Emplacement characteristics, time scales, and volcanic gas release rates of continental flood basalt eruptions on Earth. Special Paper of the Geological Society of America, 505, 319-337. Shaw, D. M., 2006. Trace Elements in Magmas: A Theoretical Treatment, Cambridge, University Press, New York. Shaw, J. E., Baker, J. A, Menzies, M.A., Thirlwall, M. F., Ibrahim, K. M., 2003. Petrogenesis of the largest intraplate volcanic field on the Arabian plate (Jordan): A mixed lithosphere-asthenosphere source activated by lithospheric extension. Journal of Petrology, 44, 1657-1679. Shellnutt, J.G., 2014. The Emeishan large igneous province: a synthesis. Geoscience Frontiers, 5, 369-394. Sigurdsson, H., 2000. Volcanic episodes and rates of volcanism. In: Sigurdsson H. (Eds.), Encyclopedia of Volcanoes, Academic Press, 271-282. Simons, W., Socquet, A., Vigny, C., Ambrosius, B. A. C., 2007. A decade of GPS in southeast Asia: Resolving Sundaland motion and boundaries. Journal of Geophysical Research Atmospheres, 112, B06420. Sisson, T. W., Kimura, J. I., Coombs, M. L., 2009. Basanite-nephelinite suite from early Kilauea: carbonated melts of phlogopite-garnet peridotite at Hawaii's leading magmatic edge. Contributions to Mineralogy and Petrology, 158, 803-829. Sorbadere, F., Médard, E., Laporte, D., Schiano, P., 2013. Experimental melting of hydrous peridotite-pyroxenite mixed sources: Constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs. Earth and Planetary Science Letters, 384, 42-56. Sone, M., Metcalfe, I., Chaodumrong, P., 2012. The Chanthaburi terrane of southeastern Thailand: Stratigraphic confirmation as a disrupted segment of the Sukhothai Arc. Journal of Asian Earth Sciences, 61, 16-32. Sun, S. S., Hanson, G. N., 1975. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contributions to Mineralogy and Petrology, 52, 77-106. Sun, S. S., McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society of London Special Publication, 42, 313-345. Sutherland, F. L., Bosshart, G., Fanning, C. M., Hoskin, P. W. O., Coenraads, R. R., 2002. Sapphire crystallization, age and origin, Ban Huai Sai, Laos: Age based on zircon inclusions. Journal of Asian Earth Sciences, 20, 841-849. Sutthirat, C., 1995. Petrochemistry of Basalts in Amphoe Sop Prab and Amphoe Ko Kha, Changwat Lampang. Unpublished M. Sc thesis, Chulalongkorn University, Thailand, 158. Sutthirat, C., Charusri, P., Farrar, E., Clark, A. H., 1994. New 40Ar/39Ar Geochronology and some Cenozoic Basalts in Thailand. In: Angsuwathana, P. (Eds.), Proceedings of the International Symposium on Stratigraphic Correlation of Southeast Asia, Department of Mineral Resources, Bangkok, 306–321. Steiger, R. H., Jäger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters, 36, 359-362. Tang, M., McDonough, W. F., Ash, R. D., 2017. Europium and strontium anomalies in the MORB source mantle. Geochimica et Cosmochimica Acta, 197, 132-141. Tatsumi, Y., Eggins, S. M., 1995. Subduction Zone Magmatism. Blackwell Science, Cambridge, MA. Thompson, R. N., Ottley, C. J., Smith, P. M., Pearson, D.G., Dickin, A. P., Morrison, M. A., Leat, P. T., Gibson, S. A., 2005. Source of the Quaternary alkalic basalts, picrites and basanites of the Potrillo volcanic field, New Mexico, USA: Lithosphere or convecting mantle? Journal of Petrology, 46, 1603-1643. Ueno, K., Charoentitirat, T., 2011. Carboniferous and Permian. In: Ridd, M. F., Barber, A. J., Crow, M. J. (Eds.), The Geology of Thailand, Geological Society, London, 71-136. Vichit, P., 1992. Gemstones in Thailand. In: Phiancharoen, C. (Eds.), Proceedings of a National Conference on Geologic Resources of Thailand, Potential for Future Development, Department of Mineral Resources, Supplementary, 124-150. Wang, F., Jourdan, F., Lo, C. H., Nomade, S., Guillou, H., Zhu, R. X., Yang, L., Shi, W., Feng, H., Wu, L., Sang, H., 2014. YBCs: A new standard for 40Ar/39Ar dating. Chemical Geology, 388, 87-98. Wang, X., Yao, X., Wang, S., Zhu, X., Wang, J., Wang, C., 2019. Intraplate extension of the Indochina plate deduced from 26 to 24 Ma A-type granites and tectonic implications. International Geology Review, 61, 1691-1705. Wendlandt, R. F., Mysen, B. O., 1980. Melting phase relations of nature peridotite + CO2 as a function of degree of partial melting at 15 and 30 kbar. American Mineralogist, 65, 37-44. Wilson, M., Patterson, R., 2001. Intraplate magmatism related to short-wavelength convective instabilities in the upper mantle: Evidence from the Tertiary-Quaternary volcanic province of Western and Central Europe. In: Ernst, R. E. and Buchan, K. L. (Eds.), Mantle Plumes: Their Identification through Time, GSA Special Papers, 352, 37-58. Wongwanich, T., Boucot, A. J., 2011. Devonian. In: Ridd, M. F., Barber, A. J., Crow, M. J. (Eds.), The Geology of Thailand, Geological Society, London, 53-70. Wyllie, P. J., Huang, W., 1976. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications. Contributions to Mineralogy and Petrology, 54, 79-107. Yan, Q., Shi, X., Metcalfe, I., Liu, S., Xu, T., Kornkanitnan, N., Sirichaiseth, T., Yuan, L., Zhang, Y., Zhang, H., 2017. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Science Reports, 8, 2640. York, D., 1969. Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters, 5, 320-324. Yu, C., Shi, X., Yang, X., Zhao, J., Chen, M., Tang, Q., 2017. Deep thermal structure of Southeast Asia constrained by S-velocity data. Marine Geophysical Research, 38, 1-15. Yui, T. F., Wu, C. M., Limtrakun, P., Sricharn, W., Boonsoong, A., 2006. Oxygen isotope studies on placer sapphire and ruby in the Chanthaburi-Trat alkali basaltic gemfield, Thailand. Lithos, 86, 197-211. Yui, T. F., Zaw, K., Limtrakun, P., 2003. Oxygen isotope studies on placer sapphire and ruby in the Chanthaburi-Trat alkali basaltic gemfield, Thailand. Lithos, 67, 153-161. Zack, T., Brumm, R., 1998. Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/clinopyroxene partitioning in garnet pyroxenites. International Kimberlite Conference: Extended Abstracts, 7, 986-988. Zeng, G., Chen, L. H., Xu, X. S., Jiang, S. Y., Hofmann, A. W., 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chemical Geology, 273, 35-45. Zhang, M., O’Reilly, S. Y.,1997. Multiple sources for basaltic rocks from Dubbo,eastern Australia: Geochemical evidence for plume-lithosphere interaction. Chemical Geology, 136, 33-54. Zhang, M., Suddaby, P., Thompson, R. N., Thirlwall, M. F., Menzies, M. A., 1995. Potassic volcanic rocks in NE China: Geochemical constraints on mantle source and magma genesis. Journal of Petrology, 36, 1275-1303. Zhou, P., Mukasa, S. B., 1997. Nd-Sr-Pb isotopic, and major- and trace-element geochemistry of Cenozoic lavas from the Khorat Plateau, Thailand: sources and petrogenesis. Chemical Geology, 137, 175-193. Zindler, A., Hart, S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571. Zou, H., Zindler, A., Xu, X., Qi, Q., 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chemical Geology, 171, 33-47.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86182-
dc.description.abstract中南半島各國均受到不同程度晚新生代板內岩漿活動之影響,泰國的新生代火成岩相比中南半島東岸的大規模噴發與出露,空間上分布較為零星並且是少數有前人研究報導出露中酸性火山岩的地方。本研究以地球化學方法探討泰國新生代火成岩之成因,藉此對板內岩漿系統的形成與噴發機制,以及整個東南亞地區的晚新生代地體構造有更深入的了解。本研究分析60件採集自泰國不同地區的新生代火山岩,其中包含前人研究的26個樣本(Barr and MacDonald, 1981和Barr and James, 1990),進行系統的岩象描述與地球化學分析。 岩象觀察表明,大多樣本受到蝕變的影響有限,保留相對新鮮的斑晶與基質,多數玄武質岩石樣本具有微斑晶結構,少數為無斑隱晶質。根據CIPW Norm及全岩主要元素分類,將基性樣本分為橄欖石鹼性玄武岩、橄欖石矽質玄武岩、石英矽質玄武岩及中酸性岩四組。基性樣本具有與洋島玄武岩相似的微量元素特徵,富集大離子親石元素(原始地函的20到150倍不等)與輕稀土元素(CI隕石的70到300倍不等),重稀土元素(CI隕石的6到17倍不等)相對輕稀土元素虧損;大多樣本的Nb、Ta與Ti均沒有呈現負異常,表明岩漿受到的地殼混染很輕微。根據基性樣本的主量、微量元素和Sr-Nd-Pb同位素等特徵,岩漿來源可能是含有橄欖岩和輝石岩的碳酸鹽化地函。中酸性岩之地球化學特徵無法通過基性岩漿結晶分異或地殼混染產生,相反地,特提斯洋隱沒相關之新生地殼的熔融提供較好的解釋。 本研究獲得的40Ar/39Ar年代證實前人研究結果,表明泰國晚新生代板內岩漿活動沒有明確的時空趨勢。另外,本研究未發現能代表高溫岩漿之岩石(例如苦橄岩),故結果不支持地函熱柱模式。相反地,岩漿的形成更可能與岩石圈被動擴張導致軟流圈上湧而熔融相關。倘若此推論正確,火山地區可能標示擴張的軌跡或所在地,其規模或許與擴張程度有關。此外,呵叻高原火成岩的重稀土元素含量比泰國其他區域的火成岩更低,可能與不同岩石圈結構所導致的石榴石結晶分異有關。zh_TW
dc.description.abstractLate Cenozoic intraplate magmatism affected a vast area in various countries of Southeast Asia. Occurrences in Thailand are generally scattered and of limited sizes, whereas those in eastern Cambodia, southern Laos, and southern Vietnam are generally more extensive. In order to address this spatial difference, its probable link to magma source, magmatic processes and regional tectonics, we study the petrology and geochemistry of 64 samples, including 26 samples collected in previous studies (Barr and MacDonald, 1981 and Barr and James, 1990). Representative samples were chosen for 40Ar/39Ar dating and Sr-Nd-Pb isotopic analysis. Most samples are affected in a limited way by alteration, retaining relatively fresh phenocrysts and matrix. They are geochemically classified into olivine alkali basalt, olivine tholeiite, quartz tholeiite, and intermediate-felsic rocks. Most samples in the first three groups display ocean island basalt-like trace element patterns without negative anomalies in Nb, Ta and Ti, suggesting insignificant contamination of the ascending magma by continental crust. The elemental and Sr-Nd-Pb isotopic variations of these samples can be explained by melting of a carbonated mantle source containing both peridotites and pyroxenites, followed by variable degrees of fractional crystallization. The intermediate-felsic rocks have geochemical features that cannot be produced by closed system fractional crystallization or crustal contamination of the associated basaltic magmas. Instead, those features are best explained by derivation from isotopically juvenile, underplated mafic rocks produced by an earlier episode of Neotethyan subduction. New 40Ar/39Ar ages corroborate a previous suggestion that Late Cenozoic intraplate magmatism, Thailand has no clear spatial-temporal patterns. This result, together with the lack of high-temperature magmas like picrites, is hard to reconcile with magma generation by a mantle plume. Passive extension is a more likely magma-forming mechanism and was supported by independent lines of geological evidence. If that is correct, then locations of the volcanic fields might mark areas where extension was dominant, but their limited sizes might reflect relative degree of extension was low compared with occurrences in eastern Cambodia, southern Laos, and southern Vietnam. Further, volcanic fields in the Khorat plateau show lower heavy REE concentrations than those elsewhere in Thailand, which might be related to garnet fractionation as a result of different lithospheric structure.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:40:53Z (GMT). No. of bitstreams: 1
U0001-0509202210314300.pdf: 15276509 bytes, checksum: 5c18ae402294da50a19037d125b1e34b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 圖目錄 vii 表目錄 x 第一章、緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.2.1 研究動機 4 1.2.2 研究目的 6 第二章、地質背景與研究樣本 8 2.1 地質背景 8 2.1.1 中南半島地質背景 8 2.1.2 泰國區域地質 15 2.1.3 泰國晚新生代岩漿活動 18 2.2 研究樣本 25 第三章 岩象學 31 3.1 岩象觀察 31 3.1.1 薄片岩象觀察 31 3.1.2 微區螢光光譜掃描分析儀 31 3.1.3 電子顯微鏡分析與觀察 31 3.2 岩象觀察結果 32 3.2.1 橄欖石 36 3.2.2 長石 39 3.2.3 單斜輝石 41 3.2.4 不透光礦物 41 3.2.5 石英 44 3.2.6 玻璃 45 3.2.7 副礦物 45 3.2.8 結構/組織 46 3.2.9 岩象觀察綜述 47 第四章 研究方法 48 4.1 全岩主量元素分析 50 4.1.1 樣本前處理 50 4.1.2 主量元素分析原理與儀器 51 4.1.3 標準品分析 51 4.1.4 燒失量測量 51 4.2 全岩微量元素分析 53 4.2.1 樣本前處理 53 4.2.2 微量元素分析儀器 56 4.2.3 微量元素分析 56 4.2.4 標準品分析 56 4.3 Sr-Nd-Pb同位素分析 57 4.3.1 樣本前處理 57 4.3.2 Sr-Nd-Pb同位素分析儀器 57 4.3.3 Pb同位素分析 58 4.3.4 Sr-Nd同位素分析 58 4.4 氬-氬同位素定年法 59 4.4.1 樣本前處理 59 4.4.2 分析儀器 60 4.4.3 分析原理 60 4.4.4 氬-氬同位素分析 61 第五章 研究結果 62 5.1 全岩主量元素成分 62 5.2 全岩微量元素成分 74 5.3 Sr-Nd-Pb同位素成分 88 5.4 氬-氬同位素 93 第六章 討論 95 6.1 蝕變影響 95 6.2 結晶分異 96 6.3 地殼混染 102 6.4 地函源區和熔融條件 105 6.4.1 地函端源成分 105 6.4.2 原始岩漿來源 105 6.4.2.1 碳酸鹽化橄欖岩 108 6.4.2.2 含水交代換質作用產生的角閃石岩 110 6.4.2.3 石榴石輝石岩 110 6.4.3 岩漿熔融條件 112 6.5 泰國中部的中酸性岩石 114 6.6 岩漿活動時空分布及地體構造意義 117 第七章 結論 122 參考資料 123 附錄A 1 附錄B 35 附錄C 38 附錄D 40
dc.language.isozh-TW
dc.subject板內火成岩zh_TW
dc.subject泰國zh_TW
dc.subject地球化學zh_TW
dc.subject鹼性玄武岩zh_TW
dc.subject新生代zh_TW
dc.subjectgeochemistryen
dc.subjectThailanden
dc.subjectCenozoicen
dc.subjectintraplate volcanismen
dc.subjectalkali basalten
dc.title泰國晚新生代火成岩之地球化學特徵與岩石成因zh_TW
dc.titleGeochemistry and petrogenesis of Late Cenozoic volcanic rocks in Thailanden
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor彭君能(Kwan-Nang Pang)
dc.contributor.oralexamcommittee王國龍(Kuo-Lung Wang),賴昱銘(Yu-Ming Lai)
dc.subject.keyword泰國,新生代,板內火成岩,鹼性玄武岩,地球化學,zh_TW
dc.subject.keywordThailand,Cenozoic,intraplate volcanism,alkali basalt,geochemistry,en
dc.relation.page176
dc.identifier.doi10.6342/NTU202203137
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2022-09-12-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-0509202210314300.pdf14.92 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved