請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86160完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韓仁毓(Jen-Yu Han) | |
| dc.contributor.author | Chun-Jia Huang | en |
| dc.contributor.author | 黃春嘉 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:39:43Z | - |
| dc.date.copyright | 2022-09-06 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-06 | |
| dc.identifier.citation | Apaydin, H., Sonmez, F. K., and Yildirim, Y. E., (2004). Spatial interpolation techniques for climate data in the GAP region in Turkey. Climate Research, 28(1), 31-40. Ågren, J., Strykowski, G., Bilker-Koivula, M., Omang, O., Märdla, S., Oja, T., ... and Valsson, G., (2016). On the development of the new Nordic gravimetric geoid model NKG2015. In: IAG Symposium on Gravity, Geoid and Height Systems, September,2016 Thessaloniki, Greece. 19-23. Ahlgren, K., Scott, G., Zilkoski, D., Shaw, B., and Paudel, N., (2020). GEOID 18. NOAA Technical Report NOS NGS, 72,1-94. Albayrak, M., Özlüdemir, M. T., Aref, M. M., and Halicioglu, K., (2020). Determination of Istanbul geoid using GNSS/levelling and valley cross levelling data. Geodesy and Geodynamics, 11(3), 163-173. Arana, D., Camargo, P. O., and Guimaraes, G. N., (2017). Hybrid Geoid Model: Theory and Application in Brazil. Anais da Academia Brasileira de Ciências, 89, 1943-1959. Barnes, D., Beale, J., Small, H., and Ingalls, S., (2020). Introducing EGM2020. In: 22nd EGU General Assembly, 4-8 May, 2020 Germany. European Geophysical Union, 9984. Brown, N. J., McCubbine, J. C., Featherstone, W. E., Gowans, N., Woods, A., and Baran, I., (2018). AUSGeoid2020 combined gravimetric–geometric model: location-specific uncertainties and baseline-length-dependent error decorrelation. Journal of Geodesy, 92(12), 1457-1465. Benahmed, D. S. A., Kahlouche, S., and Fairhead, J. D., (2006). A procedure for modelling the differences between the gravimetric geoid model and GPS/levelling data with an example in the north part of Algeria. Computers & Geosciences, 32(10), 1733-1745. Chen, C. L., (2012). A Study of Improving Traditional 2nd Curve Surface Fitting Local Geoid by Particle Swarm Optimization, Master Thesis, National Chung Hsing University, Taichung,Taiwan, 69р. Claessens, S. J., Hirt, C., Amos, M. J., Featherstone, W. E., and Kirby, J. F., (2011). The NZGEOID09 model of New Zealand. Survey Review, 43(319), 2-15. Das, R. K., Samanta, S., Jana, S. K., and Rosa, R., (2018). Polynomial interpolation methods in development of local geoid model. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 265-271. Ding, H. and Sun, J., (2013). Research on total least-squares methods for transformation of GPS elevation. Journal of Geodesy and Geodynamics, 33 (03), 52–55. Deniz, R., Akyılmaz, O., Erol, S., Özöner, B., and Denli, H., (2001). Precise Geoid Determination Using GPS & Levelling Measurement. Fourth Turkish—German Joint Geodetic Days, Berlin, II, 591-596. Dawod, G. M., Mohamed, H. F., and Ismail, S. S., (2010). Evaluation and adaptation of the EGM2008 geopotential model along the Northern Nile Valley, Egypt: Case study. Journal of Surveying Engineering, 136(1), 36-40. El-Ashquer, M., Al-Ajami, H., Zaki, A., and Rabah, M., (2020). Study on the selection of optimal global geopotential models for geoid determination in Kuwait. Survey Review, 52(373), 373-382. El-Ashquer, M., Elsaka, B., and El-Fiky, G., (2017). EGY-HGM2016: an improved hybrid local geoid model for Egypt based on the combination of GOCE-based geopotential model with gravimetric and GNSS/levelling measurements. Arabian Journal of Geosciences, 10(11), 1-10. El-Ashquer, M., (2017). An improved hybrid local geoid model for Egypt, Doctoral Dissertation, Zagazig University, 170 р. Erol, B., and Çelik, R. N., (2003). Investigation on local precise geoid determination using GPS and levelling data. In: International Symposium of Modern Technologies, Education and Professional Practice in Globalizing World, 2003 Sofya, Bulgaristan, 6-8. Erol, B., Işık, M. S., and Erol, S., (2020). Assessment of gridded gravity anomalies for precise geoid modeling in turkey. Journal of Surveying Engineering, 146(3), 05020005. Erol, S., and Erol, B., (2021). A comparative assessment of different interpolation algorithms for prediction of GNSS/levelling geoid surface using scattered control data. Measurement, 173, 108623. Eberly, D. (2002). Thin plate splines. Geometric Tools Inc, 2002, 116. URL: https://www.geometrictools.com/ Forsberg, R., (1984). A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Ohio State Univ Columbus Dept Of Geodetic Science and Surveying. Franke, R., (1982). Smooth interpolation of scattered data by local thin plate splines. Computers & mathematics with applications, 8(4), 273-281. Featherstone, W. E., Holmes, S. A., Kirby, J. F., and Kuhn, M., (2004). Comparison of remove-compute-restore and University of New Brunswick techniques to geoid determination over Australia, and inclusion of Wiener-type filters in reference field contribution. Journal of Surveying Engineering, 130(1), 40-47. Featherstone, W. E., and Lichti, D. D., (2009). Fitting gravimetric geoid models to vertical deflections. Journal of Geodesy, 83(6), 583-589. Featherstone, W. E., and Sproule, D. M., (2006). Fitting AusGeoid98 to the Australian height datum using GPS-levelling and least squares collocation: application of a cross-validation technique. Survey Review, 38(301), 573-582. Gribov, A., and Krivoruchko, K., (2011). Local polynomials for data detrending and interpolation in the presence of barriers. Stochastic Environmental Research and Risk Assessment, 25(8), 1057-1063. Guimarães, G. D. N., Blitzkow, D., Barzaghi, R., and Matos, A. C. O. C. D., (2014). The computation of the geoid model in the state of São Paulo using two methodologies and GOCE models. Boletim de Ciências Geodésicas, 20, 183-203. Guo, D. and Xue, Z., (2020). Geoid determination through the combined least-squares adjustment of GNSS/levelling/gravity networks – a case study in Linyi, China. Survey Review, 53 (381), 504–512. He, L., Li, J.C., and Chu, Y.H., (2017). Evaluation of the geopotential value for the local vertical datum of China using GRACE/ GOCE GGMs and GPS/leveling data. Acta Geodaetica et Cartographica Sinica, 46 (7), 815–823. Heiskanen, W.A. and Moritz, H., (1967). Physical geodesy. San Francisco, CA: Freeman. Hirt, C., Featherstone, W. E., and Marti, U., (2010). Combining EGM2008 and SRTM/DTM2006. 0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. Journal of Geodesy, 84(9), 557-567. Hwang, C., Hsu, H. J., Featherstone, W. E., Cheng, C. C., Yang, M., Huang, W., ... and Su, W. Y., (2020). New gravimetric-only and hybrid geoid models of Taiwan for height modernisation, cross-island datum connection and airborne LiDAR mapping. Journal of Geodesy, 94(9), 1-22. Hwang, C., Hsu, H.J., and Huang, C.H., (2013). A new geoid model of Taiwan: applications to hazard mitigation, environmental monitoring and height modernization. Taiwan Journal of Geoinformatics, 1 (1), 57–81. Hwang, C., Wang, C. G., and Hsiao, Y. S., (2003). Terrain correction computation using Gaussian quadrature. Computers & Geosciences, 29(10), 1259-1268. Huang, W., Cheng, C. C., Hwang, C., Yu, D., Chen, T. W., and Chen, Y. T., (2021). The 2021 gravimetric and hybrid geoid models for Taiwan and offshore islands: application to a seamless vertical datum. Terrestrial, Atmospheric & Oceanic Sciences, 32. Huang, C. J., and Han, J. Y., (2022). An adaptive approach to optimise regional geoid undulation model for engineering applications. Survey Review, 1-17. Jiang, L., Madsen, H., and Bauer-Gottwein, P., (2019). Simultaneous calibration of multiple hydrodynamic model parameters using satellite altimetry observations of water surface elevation in the Songhua River. Remote Sensing of Environment, 225, 229-247. Jekeli, C., (2000), Heights, the geopotential, and vertical datums, Tech. Rep. 459, Department of Civil and Environmental Engineering and Geodedic Science, The Ohio State University, Columbus, Ohio 43210-1275. Jahanmard, V., Delpeche-Ellmann, N., and Ellmann, A., (2021). Realistic dynamic topography through coupling geoid and hydrodynamic models of the Baltic Sea. Continental Shelf Research, 222, 104421. Kaloop, M. R., Zaki, A., Al-Ajami, H., and Rabah, M., (2020). Optimizing local geoid undulation model using GPS/levelling measurements and heuristic regression approaches. Survey Review, 52(375), 544-554. Kao, S. P., Chen, C. N., Huang, H. C., and Shen, Y. T., (2014). Using a least squares support vector machine to estimate a local geometric geoid model. Boletim de Ciências Geodésicas, 20, 427-443. Kao, S. P., Ning, F. S., Chen, C. N., and Chen, C. L., (2017). Using Particle Swarm Optimization to Establish a Local Geometric Geoid Model. Boletim de Ciências Geodésicas, 23, 327-337. Khazraei, S. M., Nafisi, V., Amiri-Simkooei, A. R., and Asgari, J., (2017). Combination of GPS and leveling observations and geoid models using least-squares variance component estimation. Journal of Surveying Engineering, 143(2), 04016023. Kotsakis, C., and Katsambalos, K. (2010). Quality analysis of global geopotential models at 1542 GPS/levelling benchmarks over the Hellenic mainland. Survey Review, 42(318), 327-344. Kotsakis, C., Katsambalos, K., and Ampatzidis, D., (2012). Estimation of the zero-height geopotential level W o LVD in a local vertical datum from inversion of co-located GPS, leveling and geoid heights: a case study in the Hellenic islands. Journal of Geodesy, 86(6), 423-439. Kuroishi, Y., Ando, H., and Fukuda, Y., (2002). A new hybrid geoid model for Japan, GSIGEO2000. Journal of Geodesy, 76(8), 428-436. Kumar, J., and Nath, U., 2016. Determination of geoid undulation by astro-geodetic method. Journal of Surveying Engineering, 142 (3), 05015007. Kim, K. B., Yun, H. S., and Choi, H. J., (2020). Accuracy evaluation of geoid heights in the national control points of south Korea using high-degree geopotential model. Applied sciences, 10(4), 1466. Lee, S. B., Auh, S. C., and Seo, D. Y., (2017). Evaluation of global and regional geoid models in South Korea by using terrestrial and GNSS data. KSCE Journal of Civil Engineering, 21(5), 1905-1911. Lee, J., Kwon, J. H., Lee, Y., and Lee, H., (2021). Development of the Korean National Geoid Model (KNGeoid18) and Applications for the Height Determination of Coastal Land Points. Journal of Coastal Research, 114(SI), 405-409. Leick, A., Rapoport, L., and Tatarnikov, D., (2004). GPS Satellite Surveying. John Wiley and Sons. Li, Y. S., and Ning, F. S., (2019). Research into GNSS levelling using network RTK in Taiwan. Survey Review, 51(364), 17-25. Ligas, M., and Kulczycki, M., (2018). Kriging and moving window kriging on a sphere in geometric (GNSS/levelling) geoid modelling. Survey Review, 50(359), 155-162. Ligas, M., and Szombara, S., (2018). Geostatistical prediction of a local geometric geoid-kriging and cokriging with the use of EGM2008 geopotential model. Studia Geophysica et Geodaetica, 62(2), 187-205. Lin, L. S., (2007). Application of a back-propagation artificial neural network to regional grid-based geoid model generation using GPS and leveling data. Journal of Surveying Engineering, 133(2), 81-89. Lin, L. S., (2014). Orthometric height improvement in Tainan City using RTK GPS and local geoid corrector surface models. Journal of surveying engineering, 140(1), 35-43. Lee, D. H., Yun, H. S., and Huang, H., (2009). Development of a precise geoid model for the establishment of a consistent height system in the Geoga grand bridge construction area. China Ocean Engineering, 23(4), 679-694. Marotta, G. S. A., and Vidotti, R. M., (2017). Development of a local geoid model at the Federal District, Brazil, patch by the remove-compute-restore technique, following Helmert's condensation method. Boletim de Ciências Geodésicas, 23, 520-538. Mikhail, E. M., and Ackermann, F., (1976). Observations and Least Squares. New York: IEP-A Dun-Donnelley. Mikhail, E. M., and Gracie, G., (1981). Analysis and adjustment of survey measurements. Van Nostrand Reinhold.New York. Miyahara, B., Kodama, T., and Kuroishi, Y., (2014). Development of new hybrid geoid model for Japan, “GSIGEO2011”. Bulletin of the Geospatial Information Authority of Japan, 62, 12. Morelli, S., Segoni, S., Manzo, G., Ermini, L., and Catani, F., (2012). Urban planning, flood risk and public policy: The case of the Arno River, Firenze, Italy. Applied Geography, 34, 205-218. Mosquera, J. A. T., Silva, M. C., Isla, F., and Prado, C., (2021). Assessment of hybrid geoids in Chile and Spain, combining GGM and observations for GNSS/Leveling. Geodesy and Geodynamics,12(2),65-92. Nwilo, P. C., Opaluwa, Y. D., Adejare, Q., Ayodele, G. G., and Ayeni, A. M., (2009). Local Geoid Modelling of Lagos Island Area Using Geometrical Interpolation Method. Nigerian Journal of Surveying and Geoinformatics,2(2),68-82. Ogundare, J.O., (2015). Precision surveying: the principles and geomatics practice. John Wiley and Sons. New York. Pa’suya, M. F., Din, A. H. M., Amin, Z. M., Omar, K. M., and Omar, A. H., (2017). Evaluation of Global Digital Elevation Model for Flood Risk Management in Perlis. In: Proceedings of Global Civil Engineering Conference, July 2017 Singapore, 1007-1017. Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K., (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4), 531–535. Putraningtyas, M. E. L., Heliani, L. S., Widjajanti, N., and Aditya, T., (2021). Determination of a Local Hybrid Geoid as a Height Reference System for 3D Cadastre. Indonesian Journal of Geography, 53(2). Reguzzoni, M., Sansó, F., and Venuti, G., 2005. The theory of general kriging, with applications to the determination of a local geoid. Geophysical Journal International, 162(2), 303-314. Roman, D. R., Wang, Y. M., Saleh, J., and Li, X., (2010). Geodesy, geoids, and vertical datums: A perspective from the US National Geodetic Survey. In: FIG Congress, 11-16 April 2010 Sydney, Australia. Roman, D., and Ahlgren, K., (2019). GEOID18: Last US Hybrid Geoid Prior to NAPGD2022. In: FIG Working Week , 22-26 April 2019 Hanoi, Vietnam. Schwarz, K. P., Sideris, M. G., and Forsberg, R., (1990). The use of FFT techniques in physical geodesy. Geophysical Journal International, 100(3), 485-514. Saadon, A., El-Ashquer, M., Elsaka, B., and El-Fiky, G., (2022). Determination of local gravimetric geoid model over Egypt using LSC and FFT estimation techniques based on different satellite-and ground-based datasets. Survey Review, 54(384), 263–273. Sadiq, M., and Ahmad, Z., (2009). On the selection of optimal global geopotential model for geoid modeling: A case study in Pakistan. Advances in Space Research, 44(5), 627-639. Sansò, F., and Sideris, M. G., (2013). The local modelling of the gravity field by collocation. In: Geoid Determination in Earth System Sciences, 2013 Berlin, Heidelberg, 203-258. Soler, T., and Han, J. Y., (2021). Rapid Prediction of Vertical Deflections and Their Statistics for Surveying and Mapping Applications: Three Case Studies. Journal of Surveying Engineering, 147(4), 04021021. Soycan, M., and Soycan, A., (2008). Transformation of 3D GPS Cartesian coordinates to ED50 using polynomial fitting by robust re-weighting technique. Survey Review, 40(308), 142-155. Soycan, M., (2014). Improving EGM2008 by GPS and leveling data at local scale. Boletim de Ciências Geodésicas, 20(1), 3-18. Stopar, B., Ambrožič, T., Kuhar, M., and Turk, G., (2006). GPS-derived geoid using artificial neural network and least squares collocation. Survey Review, 38(300), 513-524. Torge, W., (2001). Geodesy. 3rd ed. de Gruyter.Berlin-New York. Tütüncü, K., Şahman, M. A., and Tuşat, E., (2021). A hybrid binary grey wolf optimizer for selection and reduction of reference points with extreme learning machine approach on local GNSS/leveling geoid determination. Applied Soft Computing, 108, 107444. Wang, G., and Soler, T., (2015). Measuring land subsidence using GPS: Ellipsoid height versus orthometric height. Journal of Surveying Engineering, 141(2), 05014004. Weaver, B., Gillins, D. T., and Dennis, M., (2018). Hybrid survey networks: Combining real-time and static GNSS observations for optimizing height modernization. Journal of Surveying Engineering, 144(1), 05017006. Yang, M., Chen, K. H., and Shiao, S. W., (2003). A new height reference network in Taiwan. Survey Review, 37(290), 260-268. Yilmaz, M., Turgut, B., Güllü, M., and YILMAZ, İ., (2017). The evaluation of high-degree geopotential models for regional geoid determination in Turkey. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(1), 147-153. Yang, Z. J., and Chen, Y. Q., (1999). Determination of local geoid with geometric method: Case study. Journal of Surveying Engineering, 125(3), 136-146. You, R. J., (2006). Local geoid improvement using GPS and leveling data: Case study. Journal of Surveying Engineering, 132(3), 101-107. Zhang, P., Bao, L., Guo, D., and Li, Q., (2021). Estimation of the height datum geopotential value of Hong Kong using the combined Global Geopotential Models and GNSS/levelling data. Survey Review, 54(383), 106-116. Zhong, D., (1997). Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights. Journal of Geodesy, 71(9), 552-561. 內政部Ministry of the Interior,2014,103年臺灣地區大地起伏模型成果說明,URL:https://www.hlmrs.hlc.edu.tw/30/813/news/45/2014-6/2014-6-20-8-53-25-nf1.pdf | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86160 | - |
| dc.description.abstract | 由於測量、建設、製圖等方面的需求不斷增加,並隨著城市的快速發展,目前空間資訊的趨勢已從早期的二維資訊轉變為三維資訊。如何確定高程基準是相當重要的一項議題。在現代測量中,大地起伏扮演著重要角色,能將GNSS獲得的橢球高轉換為工程應用的正高。因此,建構高精度的大地起伏模型則至關重要。在本研究中,提出了一種自適應法應用於提升區域大地起伏模型,包含重力法大地起伏模型以及EGM2008大地起伏模型。該演算法在大地起伏趨勢估計的過程中,能自動選擇最適應的候選點,識別出屬於同一簇(cluster)的點,並能有效剔除不適合的點。此外,嚴格的序列式最小二乘法結合可調整之門檻值用於識別適合的觀測量,以便能自動生成優化模型以滿足使用者預設之精度品質。依據數值驗證成果,本研究方法可用於獲得精度在±14 mm/√km左右的城市尺度(25平方公里)之大地起伏模型。在一般工程應用中,應用大地起伏模型於GNSS之高程轉換,能有效率且較經濟地獲取高精度之正高。 | zh_TW |
| dc.description.abstract | Due to the increasing demand in surveying, construction, and mapping, with the rapid development of the city, the current trend in spatial information has changed from the earlier two-dimensional information to three-dimensional information. How to determine the height datum is quite important. In modern surveying, geoid undulation plays an important role in converting the ellipsoidal height obtained by GNSS into the orthometric height for engineering applications. Therefore, an accurate geoid undulation model for Taiwan has become paramount. In this study, an adaptive approach algorithm for improving the regional geoid undulation model based on the gravimetric geoid model and EGM2008 geoid is presented. The algorithm automatically selects the most adaptive candidate points in the process of geodetic level undulation trend estimation, identifies the points belonging to the same cluster, and effectively eliminates unsuitable points. Furthermore, a rigorous sequential least square combined with tunable criteria are used to identify appropriate observables so that optimized models can be automatically generated to satisfy the level of quality predefined by the user. Finally, based on the numerical validation, the proposed approach can be applied to obtain the urban-scale (25 square kilometers) geoid undulation model with a quality level around ± 14 mm/√km. The high accuracy orthometric heights can be efficiently and economically achieved in general engineering applications using GNSS in combination with the geoid undulation model. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:39:43Z (GMT). No. of bitstreams: 1 U0001-3108202211155900.pdf: 5520896 bytes, checksum: 50befd0ba682483353acf6e9ec365fca (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i 致謝 ii 中文摘要 iii Abstract iv Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motivation and purpose 4 1.3 Thesis outline 5 Chapter 2 Literature Review 7 2.1 Current approach for establishing geoid model 7 2.2 Examples of geoid undulation models 15 2.3 Summary 19 Chapter 3 Methodology 21 3.1 Initial geoid model by gravimetric approach 22 3.2 Initial geoid model by GGM approach 25 3.3 Initial geoid model by geometric approach 28 3.4 Optimizing the geoid model by the adaptive approach 29 3.4.1 Improved initial geoid undulation model by hybrid approach 30 3.4.2 Seed point selection for the positioning model 33 3.4.3 Surface curve fitting technique for predicting model trends 34 3.4.4 Sequential least squares technique 35 3.4.5 Observations selection by statistical indicators 38 3.4.6 Convergence condition and exception case 41 3.4.7 Statistical tests for parameter significance of criteria 41 3.5 Initial geoid model calibrated by adaptive approach model 42 3.6 Quality assessment 44 Chapter 4 Numerical Analysis 46 4.1 Study area 46 4.2 Research data 47 4.3 Evaluation of the initial geoid undulation models 50 4.4 Geoid undulation model from the proposed approach 57 4.4.1 Case 1 - Mountain area 57 4.4.2 Case 2 - Plain area 61 4.5 Quality assessment 69 4.5.1 Absolute height difference assessment 69 4.5.2 Relative height difference assessment 75 4.6 Field validation 80 4.6.1 Case 1-Taipei City 80 4.6.2 Case 2-Taichung City 81 4.7 Comparison of different approaches for improving geoid model 83 4.8 Online height transformation 87 4.9 Discussion 88 Chapter 5 Conclusion and future work 94 5.1 Conclusion 94 5.2 Future work 96 References 98 | |
| dc.language.iso | en | |
| dc.subject | 序列式最小二乘法 | zh_TW |
| dc.subject | 自適應法 | zh_TW |
| dc.subject | 大地起伏模型 | zh_TW |
| dc.subject | 高程基準 | zh_TW |
| dc.subject | 全球重力場模型2008 | zh_TW |
| dc.subject | EGM2008 | en |
| dc.subject | Adaptive approach | en |
| dc.subject | Geoid undulation model | en |
| dc.subject | Height datum | en |
| dc.subject | Sequential least squares | en |
| dc.title | 以自適應法優化大地起伏模型於工程上之應用 | zh_TW |
| dc.title | Optimizing Regional Geoid Undulation Model for Engineering Applications using Adaptive Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0001-9589-362X | |
| dc.contributor.oralexamcommittee | 趙鍵哲 (Jen-Jer Jaw),高書屏(Su-Ping Kao),甯方璽(Fang-Shii Ning),曾國欣(Kuo-Hsin Tseng) | |
| dc.subject.keyword | 自適應法,大地起伏模型,高程基準,全球重力場模型2008,序列式最小二乘法, | zh_TW |
| dc.subject.keyword | Adaptive approach,Geoid undulation model,Height datum,EGM2008,Sequential least squares, | en |
| dc.relation.page | 112 | |
| dc.identifier.doi | 10.6342/NTU202203005 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-06 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3108202211155900.pdf | 5.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
