請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86155完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍 | zh_TW |
| dc.contributor.advisor | Sheng-Lung Huang | en |
| dc.contributor.author | 林裕展 | zh_TW |
| dc.contributor.author | Yu-Chan Lin | en |
| dc.date.accessioned | 2023-03-19T23:39:28Z | - |
| dc.date.available | 2023-12-29 | - |
| dc.date.copyright | 2022-09-12 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587 (2000). [2] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340 (1997). [3] W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014). [4] T. Klein and R. Huber, “High-speed OCT light sources and systems,” Biomed. Opt. Express 8, 828 (2017). [5] R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging- design and scaling principles,” Opt. Express 13, 3513 (2005). [6] H. Lee, G. H. Kim, M. Villiger, H. Jang, B. E. Bouma, and C. S. Kim, “Linear-in-wavenumber actively-mode-locked wavelength-swept laser,” Opt. Lett. 45, 5327 (2020). [7] B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029 (2010). [8] W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685 (2010). [9] T. S. Kim, J. Joo, I. Shin, P. Shin, W. J. Kang, B. J. Vakoc, and W. Y. Oh, “9.4 MHz A-line rate optical coherence tomography at 1300 nm using a wavelength-swept laser based on stretched-pulse active mode-locking,” Sci. Rep. 10, 9328 (2020). [10] Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett. 48, 201 (2012). [11] G.H. Lee, S. Ahn, J. Gene, and M.Y. Jeon, “1.1-µm band extended wide-bandwidth wavelength-swept laser based on polygonal scanning wavelength filter,” Sensors 21, 3053 (2021). [12] K. F. Wall, and A. Sanchez, “Titanium sapphire lasers,” Linc. Lab. j. 3, 447 (1990). [13] S. Karp and B. Jalali, “Frequency-doubled FDML-MOPA laser in the visible,” Opt. Lett. 44, 5913 (2019). [14] https://www.thorlabs.com/catalogpages/547.pdf. [15] J. Cao, P. Wang, Y. Zhang, G. Shi, B. Wu, S. Zhang, and Y. Liu, “Methods to improve the performance of the swept source at 1.0 μm based on a polygon scanner,” Photonics Res. 5, 245 (2017). [16] P. Qiao, K. T. Cook, J. Qi, L. A. Coldren, and C. J. Chang-Hasnain, “Wide, continuously swept VCSEL using a novel air-cavity-dominant design,” OFC Conference, 1 (2018). [17] K. Li, C. Chase, P. Qiao, and C. J. Chang-Hasnain, “Widely tunable 1060-nm VCSEL with highcontrast grating mirror,” Opt. Express 25, 11844 (2017). [18] H. Sunaga, K. Endo, T. Ogawa, M. Shinagawa, S. Toyoda, M. Ueno, Y. Sasaki, M. Chen, and T. Sakamoto, “Voltage noise and jitter analysis for swept source optical coherence tomography using KTa1-xNbxO3 deflector,” Measurement 135, 753 (2019). [19] https://www.santec.com/en/products/oct/lasers-for-swept-source-oct.html#hsl-21. [20] R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking: A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225 (2006). [21] https://www.optores.com/index.php/products/31-next-generation-fdml-laser. [22] C. Jun, M. Villiger, W.-Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22, 25805 (2014). [23] https://www.excelitas.com/product/high-speed-ss-oct-tunable-laser-engines. [24] D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1,709 (2007). [25] J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6, 1340 (2015). [26] J. Kang, P. Feng, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Y. Wong, “Ultrafast and broadband inertia-free swept source for optical coherence tomography,” Asia Communications and Photonics Conference (2017). [27] H. Chen, Y. Li, D. Huang, F. Li, C. Lu, and P. K. A. Wai, “114 nm broadband all-fiber nonlinear polarization rotation mode locked-laser and time-stretch optical coherence tomography,” Opt. Express 29, 33322 (2021). [28] B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomography: Imaging at 1310 nm vs. 1550 nm wavelength,” J. Biphotonics 2, 357 (2009). [29] S. Tan, L. Yang, X. Wei, C. Li, N. Chen, K. K. Tsia, and K. K. Y. Wong, “High-speed wavelength-swept source at 2.0 μm and its application in imaging through a scattering medium,” Opt. Lett. 42, 1540 (2017). [30] R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, “Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing,” APL Photonics 4, 020801 (2019). [31] S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol 58, R37 (2013). [32] W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221 (1999). [33] M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404 (2004). [34] S. Wada, K. Akagawa, and H. Tashiro, “Electronically tuned Ti:sapphire laser,” Opt. Lett. 21, 731 (1996). [35] V. M. Kodach, D. J. Faber, and T. G. Van Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281, 4975 (2008). [36] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791 (1984). [37] K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photon. Technol. Lett. 24, 854 (2012). [38] S. C. Wang, C. Y. Hsu, T. T. Yang, D. Y. Jheng, T. I. Yang, T. S. Ho, and S. L. Huang, “Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser,” Opt. Lett. 41, 3217 (2016). [39] T. T. Yang, T. I. Yang, R. Soundararajan, P. S. Yeh, C. Y. Kuo, S. L. Huang, and S. Donati, “Widely tunable, 25-mW power, Ti:sapphire crystal-fiber laser,” IEEE Photon. Technol. Lett. 31, 1921 (2019). [40] Y. C. Lin, T. T. Yang, and S. L. Huang, “Ultra-broadband wavelength-swept Ti:sapphire crystal fiber laser,” Opt. Lett. 47, 2778 (2022). [41] W. J. Choi, D. I. Jeon, S. Ahn, J. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18, 23285 (2010). [42] T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol. 20, 791 (2006). [43] W. J. Choi, K. S. Park, T. J. Eom, M. K. Oh, and B. H. Lee, “Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography,” Opt. Lett. 37, 2784 (2012). [44] T. S. Ho, M. R. Tsai, C. W. Lu, H. S. Chang, and S. L. Huang, “Mirau-type full-field optical coherence tomography with switchable partially spatially coherent illumination modes,” Biomed. Opt. Express 12, 2670 (2021). [45] Y. T. Chen, C. Y. Tsai, Y. K. Chiu, T. W. Hsu, L. W. Chen, W. L. Chen, and S. L. Huang, “En face and cross-sectional corneal tomograms Using sub-micron spatial resolution optical coherence tomography,” Sci. Rep. 8, 14349 (2018). [46] B. Povazay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express 14, 7661 (2006). [47] T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35, 3432 (2010). [48] E. Auksorius, “Light-efficient beamsplitter for Fourier-domain full-field optical coherence tomography,” Opt. Lett. 45, 1240 (2020). [50] E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications (Springer, New York, 2009). [51] T. I. Yang, H. T. Liu, S. C. Wang, K. H. Chuang, T. C. Chou, and S. L. Huang, “Formation of ceramic and crystal claddings for a Ti:sapphire crystalline fiber core,” Opt. Mater. Express 10, 1215 (2020). [52] http://refractiveindex.info/?shelf=main&book=Al2O3&page=Malitson-o. [53] H. H. Telle and Á. G. Ureña, “Laser Spectroscopy and Laser Imaging: An Introduction,” CRC Press (2018). [54] E. D. Nelson, J. Y. Wong, and A. L. Schawlow, “Far infrared spectra of Al2O3:Cr3+ and Al2O3:Ti3+,” Phys. Rev. 156, 298 (1967). [55] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Amer. 3, 125 (1986). [56] R. L. Aggarwal, A. Sanchez, M. M. Stuppi, R. E. Fahey, A. J. Strauss, W. R. Rapoport, and C. P. Khattak, “Residual infrared absorption in as-grown and annealed crystals of Ti:Al2O3,” IEEE J. Quantum Elect. 24, 1003 (1988). [57] M. Yamaga, T. Yosida, S. Hara, N. Nodama, and B. Henderson, “Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in Al2O3,” J. Appl. Phys. 75, 1111 (1994). [58] A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3,” IEEE J. Quantum Elect. 24, 995 (1988). [59] J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Elect. 30, 2612 (1994). [60] R. Uecker, D. Klimm, S. Ganschow, P. Reiche, R. Bertram, M. Roßberg, and R. Fornari, “Czochralski growth of Ti:sapphire laser crystals,” Proc. SPIE 5990, 599006-1 (2005). [61] T. Danger, K. Petermann, and G. Huber, “Polarized and time-resolved measurements of excited-state absorption and stimulated emission in Ti:YAlO3 and Ti:Al2O3,” Appl. Phys. 57, 309 (1993). [62] P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. 3, 134 (1986). [63] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics,” 1st ed, Hoboken, NJ: John Wiley & Sons, Inc., 438 (1991). [64] A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Opt. Commun. 156, 264 (1998). [65] H. H. Kusuma, Z. Ibrahim, and M. K. Saidin, “Optical energy gap of Ti:Al2O3 single crystals,” J. Appl. Sci. 11, 888 (2011). [66] S. E. Demina, E. N. Bystrova, V. S. Postolov, E. V. Eskov, M. V. Nikolenko, D. A. Marshanin, V. S. Yuferev, and V. V. Kalaev, “Use of numerical simulation for growing high-quality sapphire crystals by the Kyropoulos method,” J. Cryst. Growth 310, 1443 (2008). [67] A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-doped sapphire (Al2O3) single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11, 445 (2011). [68] D. Viechnicki and F. Schmid, “Growth of large monocrystals of Al2O3 by a gradient furnace technique,” J. Crystal Growth 11, 345 (1971). [69] C. P. Khattak and F. Schmid, “Growth of the world's largest sapphire crystals,” J. Cryst. Growth 225, 572 (2001). [70] E. A. Ghezal, A. Nehari, K . Lebbou, and T. Duffar, “Observation of gas bubble incorporation during micropulling-down growth of sapphire,” Cryst. Growth Des. 12, 5715 (2012). [71] A. Nehari, T. Duffar, E.A. Ghezal, and K. Lebbou, “Chemical segregation of titanium in sapphire single crystals grown by micro-pulling-down technique: analytical model and experiments,” Cryst. Growth Des. 14, 6492 (2014). [72] D. H. Zhou, C. T. Xia, Y. Guyot, J. P. Zhong, X. D. Xu, S. L. Feng, W. Q. Lu, J. H. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495 (2015). [73] C. A. Burrus and J. Stone, “Single-crystal fiber optical devices,” Appl. Phys. Lett. 26, 318 (1975). [74] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791 (1984). [75] T. I. Yang, “The Study of Near-Infrared Broadband Single Mode Crystal Fiber Light Sources,” Ph.D. Dissertation, National Taiwan University, Taiwan (2021). [76] R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669 (1986). [77] K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode- laser-pumped glass-clad Ti:sapphire crystal fiber based broadband light source,” IEEE Photon. Technol. Lett. 24, 854 (2012). [78] L. Wu, A. Wang, J. Wu, L. Wei, G. Zhu, and S. Ying, “Growth and laser properties of Ti:sapphire single crystal fibres,” Electron. Lett. 31, 1151 (1995). [79] M. R. Kokta, “Process for enhancing Ti:Al2O3 tunable laser crystal fluorescence by annealing,” US Patent No. 4,587,035 (1986). [80] M. R. Kokta, “Process for enhancing fluorescence of Ti:Al2O3 tunable laser crystals,” US Patent No. 4,836,953 (1989). [81] S. C. Wang, “Development and Applications of Glass-clad Ti:Al2O3 Crystal Fiber,” Ph.D. Dissertation, National Taiwan University, Taiwan (2016). [82] K. Y. Hsu, M. H. Yang, D. Y. Jheng, C. C. Lai, S. L. Huang, K. Mennemann, and V. Dietrich, “Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes,” Opt. Mater. Express 3, 813 (2013). [83] C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett. 29, 439 (2004). [84] S. C. Wang, T. I. Yang, D. Y. Jheng, C. Y. Hsu, T. T. Yang, T. S. Ho, and S. L. Huang, “Broadband and high-brightness light source: glass-clad Ti:sapphire crystal fiber,” Opt. Lett. 40, 5594 (2015). [85] A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22, 1556 (1997). [86] M. Pollnau, R. P. Salath, T. Bhutta, D. P. Shepherd, and R. W. Eason, “Continuous-wave broadband emitter based on a transition-metal-ion-doped waveguide,” Opt. Lett. 26, 283 (2001). [87] A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide, ” Appl. Phys. B 75, 15 (2002). [88] L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, and J. S. Wilkinson, “Diffused Ti:sapphire channel-waveguide lasers,” J. Opt. Soc. Am. B 21, 1452 (2004). [89] C. Grivas, D. P. Shepherd, T. C. May-Smith, and R. W. Eason, “Single-transverse-mode Ti:sapphire rib waveguide laser,” Opt. Express 13, 210 (2005). [90] C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett. 31, 3450 (2006). [91] C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett. 37, 4630 (2012). [92] C. Grivas, T. C. May-Smith, D. P. Shepherd, R. W. Eason, M. Pollnau, and M. Jelinek, “Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti:sapphire waveguides,” Appl. Phys. A 79, 1195 (2004). [93] L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys Lett. 85, 5167 (2004). [94] V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, and M. Pollnau, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys Lett. 85, 1122 (2004). [95] D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser,” IEEE J. Sel. Top. Quantum Electron. 21, 0900608 (2015). [96] P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B 3, 134 (1986). [97] A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible, ” Prog. Quantum Electron. 26, 287 (2002). [98] https://www.gratinglab.com/Products/Product_Tables/Efficiency/Efficiency.aspx?print=true&efficiency=1410. [99] C. Y. Kuo, “The study of high-speed ultra-broadband Ti:sapphire crystal fiber based wavelength swept laser,” Master Thesis, National Taiwan University, Taiwan (2020). [100] G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993). [101] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics,” 1st ed, Hoboken, NJ: John Wiley & Sons, Inc., 438 (1991). [102] K. J. Weingarten, B. Braun, and U. Keller, “In situ small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements,” Opt. Lett. 19, 1140 (1994). [103] A. Riveiro , F. Quintero, M. Boutinguiza, J. del Val, R. Comesaña, F. Lusquiños, and J. Pou, “Laser cutting: A Review on the influence of assist gas,” Materials, 12, 157 (2019). [104] S. M. Moore, and D. L. Chaob, “Application of subthreshold laser therapy in retinal diseases: a review,” Expert Rev. Ophthalmol., 13, 311 (2018). [105] G. Song, E. T. Jelly, K. K. Chu, W. Y. Kendall, and A. Wax, “A review of low-cost and portable optical coherence tomography,” Prog. Biomed. Eng., 3, 032002 (2021). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86155 | - |
| dc.description.abstract | 掃頻雷射做為光源已經被廣泛的應用在光學同調斷層掃描術上,由於其掃頻速度極限跟增益介質的輻射生命期及雷射腔體的往返時間有關,因此,多數研究團隊利用輻射生命期為奈秒等級的半導體光放大器為掃頻雷射的增益介質。但由於半導體光放大器的波長多為紅外光區,且可調帶寬為100奈米附近,其所提供的縱向解析度很難達到細胞級解析度。本論文使用可調波長從650奈米到1100奈米的摻鈦藍寶石晶體光纖為增益介質,且摻鈦藍寶石的發射光譜處於低組織散射及水吸收較小的區域,加上其放光頻譜近似高斯,因此非常適用於光學同調斷層掃描術。由於晶體光纖結構擁有高度的表面積對體積的比例,可以有效提高散熱能力,憑藉此摻鈦藍寶石晶體光纖的低信號傳播損耗及高散熱能力,本論文成功實現掃頻重複率1200赫茲且掃頻帶寬為250奈米的超寬頻掃頻雷射。並藉由分析掃頻雷射的鬆弛震盪,可以計算出雷射腔體內的損耗,其數值與理論模擬結果符合。此掃描雷射可以產生0.018奈米的瞬時線寬,其對應當能量降為一半時的同調掃描深度為7毫米。如將這掃頻雷射使用於掃頻式光學同調斷層掃描時,將可以實現1.8微米的縱向解析度。然而,由於本實驗所使用的增益介質為多橫模的摻鈦藍寶石晶體光纖,因此所實現的掃頻雷射輸出模態為多橫模雷射,此特性將嚴重地影響其應用於各種系統的可行性,為此將單模光纖導入雷射腔內以消除高階橫模,本論文成功地實現單橫模輸出的超寬頻掃頻雷射。 | zh_TW |
| dc.description.abstract | Wavelength-swept lasers (WSLs) have been widely used as light source in optical coherence tomography (OCT). The wavelength tuning speed is mainly limited by the radiative lifetime of the gain media and the cavity round-trip time. Therefore, most researchers use the semiconductor optical amplifier (SOA) as the gain medium of WSL with nanosecond radiative lifetime. The gain bandwidth of a typical SOA lies around 100 nm in the infrared band, its axial resolution is very difficult to achieve cellular scale. Therefore, this dissertation uses Ti:sapphire crystal fiber (CF) with tuning ranges from 650 to 1100 nm as the gain medium. Ti:sapphire CF is very suitable for OCT because its emission spectrum lies in a region of low tissue scattering and low water absorption, as well as approximately Gaussian profile. Since the crystal fiber structure has a high surface area-to-volume ratio, it can effectively improve the heat dissipation capacity. With the low signal propagation loss and high heat dissipation of the CF, the WSL has a tuning bandwidth of 250 nm at a repetition rate of 1200 Hz. The steady-state and pulsed dynamics of the WSL were analyzed, the experimental result is fitted with the theoretical simulation. The 0.018-nm instantaneous linewidth corresponds to a 3-dB coherence roll-off of 7 mm. When using the laser for swept-source OCT, an estimated axial resolution of 1.8 μm can be achieved. However, the gain medium used in this experiment is a multi-transverse mode CF, the output mode of the WSL is also a multi-transverse mode. This characteristic will seriously affect the feasibility of its application. Therefore, the single-mode fiber is introduced into the laser cavity to eliminate the high-order transverse mode, the ultra-broadband WSL with single-transverse mode output is successfully realized. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:39:28Z (GMT). No. of bitstreams: 1 U0001-0109202222553600.pdf: 14340470 bytes, checksum: e3172246a66c84e2a638cff3cd77f0ff (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iv Abstract v List of figures ix List of tables xiv Chapter 1 Introduction 1 Chapter 2 Characterizations and Modeling of Glass-clad Ti:sapphire Crystal Fiber 8 2.1 Fundamentals of Ti:sapphire Crystal 8 2.2 Modeling of Ti:sapphire Crystal Fiber 18 2.2.1 Energy Level System and Rate Equations 18 2.2.2 Evolution of Optical Powers in Crystal Fiber 22 2.2.3 The Distributed Model for Ti:sapphire Crystal Fiber 22 Chapter 3 Fabrication Process and Analysis of Glass-clad Ti:sapphire Crystal Fiber 25 3.1 Laser-heated Pedestal Growth System 25 3.2 Single-Crystal Fiber Growth 29 3.3 Reduction Annealing Process 34 3.4 Glass-cladding Process 35 3.5 Optical Property of Glass-clad Ti:sapphire Crystal Fiber 38 3.5.1 Measurement of Propagation Loss 38 3.5.2 Measurement of Ti:sapphire Lifetime 42 3.6 Wavelength-tuning component 45 3.6.1 Diffraction Grating 45 Chapter 4 Ultra-broadband Wavelength-swept Ti:sapphire Crystal Fiber Laser 47 4.1 Double 520-nm Laser-diodes Pumped Ti:sapphire Crystal Fiber Laser 47 4.1.1 Continuous-Wave Ti:sapphire Crystal Fiber Laser with HR-AR Coatings 51 4.1.2 Continuous-Wave Ti:sapphire Crystal Fiber Laser with AR-AR Coatings 56 4.2 Laser-diode Pumped Wavelength-tuning Ti:sapphire Crystal Fiber Laser with Grating 60 4.3 Ultra-broadband Wavelength-swept Ti:sapphire Crystal Fiber Laser with Galvo Mirror 64 4.4 Modeling of Wavelength-swept Ti:sapphire Crystal Fiber 72 Chapter 5 Single-transverse Mode Ti:sapphire Crystal Fiber Laser 76 5.1 Mode-field Analysis of Wavelength-swept Ti:sapphire Crystal Fiber Laser 76 5.2 Analysis of Ti:sapphire Crystal Fiber Lasers with Single-mode Operation 80 5.2.1 Mode-field and Spectrum Analysis of Continuous-wave Ti:sapphire Crystal Fiber Laser 80 5.2.2 Mode-field and Spectrum Analysis of Continuous-wave Ti:sapphire Crystal Fiber Laser with Single-mode Operation 83 5.3 Mode-field and Spectrum Analysis of Wavelength-swept Ti:sapphire Crystal Fiber Laser with Single-mode Operation 86 Chapter 6 Conclusions and Future Work 91 6.1 Conclusions 91 6.2 Future Work 92 References 93 Appendix 105 A. Ti:sapphire Fiber-ring Laser with SMF-28e Optical Fiber 105 B. Ti:sapphire Fiber-ring Laser with 780HP Optical Fiber 108 | - |
| dc.language.iso | en | - |
| dc.subject | 光學同調斷層掃描術 | zh_TW |
| dc.subject | 掃頻雷射 | zh_TW |
| dc.subject | 摻鈦藍寶石晶體光纖 | zh_TW |
| dc.subject | 單模雷射輸出 | zh_TW |
| dc.subject | optical coherence tomography | en |
| dc.subject | wavelength-swept laser | en |
| dc.subject | Ti:sapphire crystal fiber | en |
| dc.subject | single-mode output laser | en |
| dc.title | 超寬頻掃頻摻鈦藍寶石晶體光纖雷射研究 | zh_TW |
| dc.title | Study of ultra-broadband Ti:sapphire crystal fiber based wavelength-swept laser | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 高甫仁;楊尚達;詹明哲;李穎玟;李翔傑 | zh_TW |
| dc.contributor.oralexamcommittee | Fu-Jen Kao;Shang-Da Yang;Ming-Che Chan;Yin-Wen Lee;Hsiang-Chieh Lee | en |
| dc.subject.keyword | 掃頻雷射,摻鈦藍寶石晶體光纖,單模雷射輸出,光學同調斷層掃描術, | zh_TW |
| dc.subject.keyword | wavelength-swept laser,Ti:sapphire crystal fiber,single-mode output laser,optical coherence tomography, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202203086 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-06 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2025-09-01 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
