請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86153
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋聖榮(Sheng-Rong Song) | |
dc.contributor.author | Yen-Te Wu | en |
dc.contributor.author | 吳彥德 | zh_TW |
dc.date.accessioned | 2023-03-19T23:39:23Z | - |
dc.date.copyright | 2022-10-20 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-28 | |
dc.identifier.citation | Adams, M., Moore, J., Benoit, W., Doughty, C., & Bodvarsson, G. (1993). Chemical tracer test at the Dixie Valley geothermal field, Nevada. Geothermal Reservoir Technology research program. Addison, S., Winick, J., Mountain, B., & Siega, F. (2015). Rotokawa reservoir tracer test history. Proc. NZ Geothermal Workshop, Ahmed, T. (2019). Chapter 4 - Fundamentals of Rock Properties. In T. Ahmed (Ed.), Reservoir Engineering Handbook (Fifth Edition) (pp. 167-281). Gulf Professional Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-813649-2.00004-9 Axelsson, G., Björnsson, G., & Montalvo, F. (2005). Quantitative interpretation of tracer test data. Proceedings world geothermal Congress, Axelsson, G., Stefánsson, V., & Xu, Y. (2003). Sustainable management of geothermal resources. Proceedings of the International Geothermal Conference, Bodvarsson, G. S., & Stefansson, V. (1988). Reinjection into geothermal reservoirs. In Geothermal Reservoir Engineering (pp. 103-120). Springer. Buscarlet, E., Moon, H., Wallis, I., & Quinao, J. (2015). Reservoir tracer test at the Ngatamariki geothermal field. Proceedings 37th New Zealand Geothermal Workshop, Carleton, G. B., Welty, C., & Buxton, H. T. (1999). Design and analysis of tracer tests to determine effective porosity and dispersivity in fractured sedimentary rocks, Newark Basin, New Jersey (Vol. 98). US Department of the Interior, US Geological Survey. Chang, C. R., Ramey Jr, H., & Kruger, P. (1979). Well interference test in the Chingshui geothermal field. Chang, P.-Y., Lo, W., Song, S.-R., Ho, K.-R., Wu, C.-S., Chen, C.-S., Lai, Y.-C., Chen, H.-F., & Lu, H.-Y. (2014). Evaluating the Chingshui geothermal reservoir in northeast Taiwan with a 3D integrated geophysical visualization model. Geothermics, 50, 91-100. Chen, C.-Y., & Sanyal, S. K. (2006). Power generation potential at Chingshui geothermal field, Taiwan. Proceedings of Thirty-first Workshop on Geothermal Reservoir Engineering, Cheng, W., Kuo, T., Su, C., Chen, C., Fan, K., Liang, H., & Han, Y. (2010). Evaluation of natural recharge of Chingshui geothermal reservoir using tritium as a tracer. Radiation measurements, 45(1), 110-117. Chiang, C.-W., Hsu, H.-L., & Chen, C.-C. (2015). An investigation of the 3D electrical resistivity structure in the Chingshui geothermal area, NE Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 26(3), 269. Chrysikopoulos, C. (1993). Artificial tracers for geothermal reservoir studies. Environmental Geology, 22(1), 60-70. Chrysikopoulos, C. (1993). Artificial tracers for geothermal reservoir studies. Environmental Geology, 22(1), 60-70. Danckwerts, P. (1958). The effect of incomplete mixing on homogeneous reactions. Chemical Engineering Science, 8(1-2), 93-102. Fan, K. C., Kuo, M. T., Liang, K. F., Lee, C. S., & Chiang, S. C. (2005). Interpretation of a well interference test at the Chingshui geothermal field, Taiwan. Geothermics, 34(1), 99-118. Fanchi, J. R. (2010). 4 - Porosity and Permeability. In J. R. Fanchi (Ed.), Integrated Reservoir Asset Management (pp. 49-69). Gulf Professional Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-382088-4.00004-9 Field, M. S. (1999). The QTRACER program for tracer-breakthrough curve analysis for karst and fractured-rock aquifers (Vol. 98). National Center for Environmental Assessment--Washington Office, Office of …. Frost, L., & Davison, C. (1995). Summary of the fracture zone 3 groundwater tracer test program at the Underground Research Laboratory. Gunderson, R., Parini, M., & Sirad-Azwar, L. (2002). Fluorescein and naphthalene sulfonate liquid tracer results at the Awibengkok geothermal field, West Java, Indonesia. Proceedings, 27th Workshop on Geothermal Reservoir Engineering, Stanford, California, January 28, Ingebritsen, S. E., & Sanford, W. E. (1999). Groundwater in geologic processes. Cambridge University Press. Jing, C., Zhang, S., Li, L., Wang, J., Chen, B., Tian, B., Dai, Z., & Gao, L. Rapid identification of interwell fracture-cavity combination structure in fracture-cavity reservoir based on tracer-curve morphological characteristics. Frontiers in Energy Research, 544. Jing, C., Zhang, S., Li, L., Wang, J., Chen, B., Tian, B., Dai, Z., & Gao, L. (2022). Rapid identification of interwell fracture-cavity combination structure in fracture-cavity reservoir based on tracer-curve morphological characteristics. Frontiers in Energy Research, 544. Kumar, A., & Sharma, M. M. (2018). Diagnosing fracture-wellbore connectivity using chemical tracer flowback data. SPE/AAPG/SEG Unconventional Resources Technology Conference, Lake, L. W. (1989). Enhanced oil recovery. Leibundgut, C., & Seibert, J. (2011). Tracer Hydrology. In (Vol. 2, pp. 215-236). https://doi.org/10.1016/B978-0-444-53199-5.00036-1 Levenspiel, O. (1972). Experimental search for a simple rate equation to describe deactivating porous catalyst particles. Journal of Catalysis, 25(2), 265-272. Lu, Y.-C., Song, S.-R., Lin, P.-H., Taguchi, S., Wang, C., Lai, Y.-M., Peng, T.-R., & Lee, H.-F. (2020). Thermal Fluid Changes after Operating a Geothermal System: A Case Study of the Chingshui Geothermal Field, Taiwan. Geothermics, 87, 101878. Lu, Y.-C., Song, S.-R., Taguchi, S., Wang, P.-L., Yeh, E.-C., Lin, Y.-J., MacDonald, J., & John, C. M. (2018). Evolution of hot fluids in the Chingshui geothermal field inferred from crystal morphology and geochemical vein data. Geothermics, 74, 305-318. Lu, Y.-C., Song, S.-R., Wang, P.-L., Wu, C.-C., Mii, H.-S., MacDonald, J., Shen, C.-C., & John, C. M. (2017). Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry. Journal of Asian Earth Sciences, 149, 124-133. Pérez-Romero, R.-A., Espinosa-Leon, C., Pinto-Rambaúth, K.-T., & Gutierrez-Benavides, M. (2020). Practical methodology for interwell tracer applications. CT&F-Ciencia, Tecnología y Futuro, 10(2), 27-38. Reed, M. J. (2007). An investigation of the Dixie Valley Geothermal Field, Nevada, using temporal moment analysis of tracer tests. Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Reed, M. J. (2007). An investigation of the Dixie Valley Geothermal Field, Nevada, using temporal moment analysis of tracer tests. Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Rose, P. (1998). The use of polyaromatic sulfonates as tracers in high temperature geothermal reservoirs. Proceedings, Rose, P. E., Benoit, W. R., & Kilbourn, P. M. (2001). The application of the polyaromatic sulfonates as tracers in geothermal reservoirs. Geothermics, 30(6), 617-640. Rose, P. E., Mella, M., Kasteler, C., & Johnson, S. D. (2004). The estimation of reservoir pore volume from tracer data. Proceedings, Schmalz, J., & Rahme, H. (1950). The variation of waterflood performance with variation in permeability profile. Prod. Monthly, 15(9), 9-12. Sheng, S., Duan, Y., Wei, M., Yue, T., Wu, Z., & Tan, L. (2021). Analysis of Interwell Connectivity of Tracer Monitoring in Carbonate Fracture-Vuggy Reservoir: Taking T-Well Group of Tahe Oilfield as an Example. Geofluids, 2021. Sheng, S., Duan, Y., Wei, M., Yue, T., Wu, Z., & Tan, L. (2021). Analysis of Interwell Connectivity of Tracer Monitoring in Carbonate Fracture-Vuggy Reservoir: Taking T-Well Group of Tahe Oilfield as an Example. Geofluids, 2021. Shook, G. M. (2003). A simple, fast method of estimating fractured reservoir geometry from tracer tests. Geothermal Resources Council Transactions, 27, 407-411. Shook, G. M., Ansley, S. L., & Wylie, A. (2004). Tracers and tracer testing: design, implementation, and interpretation methods. Idaho National Engineering and Environmental Laboratory Bechtel BWXT Idaho, LLC. Shook, G. M., & Forsmann, J. H. (2005). Tracer interpretation using temporal moments on a spreadsheet. Shook, G. M., & Mitchell, K. M. (2009). A Robust Measure of Heterogeneity for Ranking Earth Models: The F-PHI Curve and Dynamic Lorenz Coefficient SPE Annual Technical Conference and Exhibition, https://doi.org/10.2118/124625-MS Shook, G. M., Pope, G. A., & Asakawa, K. (2009). Determining Reservoir Properties and Flood Performance From Tracer Test Analysis. SPE Annual Technical Conference and Exhibition, Song, S.-R., & Lu, Y.-C. (2018). Geothermal Explorations on the Slate Formation of Taiwan. In. https://doi.org/10.5772/intechopen.81157 Stefansson, V.-đ. (1997). Geothermal reinjection experience. Geothermics, 26(1), 99-139. Stiles, W. E. (1949). Use of permeability distribution in water flood calculations. Journal of Petroleum Technology, 1(01), 9-13. Süß, M. (2005). Analysis of the influence of structures and boundaries on flow and transport processes in fractured porous media. Tong, L., Ouyang, S., Guo, T., Lee, C., Hu, K., Lee, C., & Wang, C. (2008). Insight into the geothermal structure in Chingshui. In: Ilan. 工業技術研究院(2010)地熱能源永續利用及深層地熱發電技術開發計畫。經濟部能源局委辦。 工業技術研究院(2012)地熱能源永續利用及深層地熱發電技術開發計畫。經濟部能源局委辦。 工業技術研究院(2015)宜蘭縣清水地熱區 IC-9、IC-13、IC19地熱井修井後產能測試成果摘要。經濟部能源局委辦。 中國石油公司(1976-1986)宜蘭縣清水地熱區中油清水地熱井地下地質報告。台灣油礦探勘總處。 宋聖榮、葉恩肇、張竝瑜、劉聰桂、吳逸民、陳洲生、羅偉(2011)宜蘭清水地熱能源研究:探勘技術平台的建立與深層地熱-宜蘭清水地熱能源研究:探勘技術平台的建立與深層地熱( II ). 林啟文、林偉雄(1995)五萬分之一臺灣地質圖說明書,圖幅第十五號三星。經濟部中央地質調查所出版。 李伯亨、凌璐璐、張可霓、王洋、郭泰融、柳志錫、歐陽湘(2013)宜蘭清水地熱儲集層數值模型與生產模擬研究。臺灣鑛業,65(4),1-12。 李清瑞、江道義、韓吟龍、王俊堯(2016)清水 IC21 地熱探勘井產能測試研究。臺灣鑛業,68(1),1-12. 孫天祥(2014)臺灣宜蘭清水地熱區之應力狀態研究。國立臺灣師範大學。台北市。https://hdl.handle.net/11296/nebh58 陳亭潔(2019)清水地熱儲集層示蹤劑試驗分析之研究。國立成功大學。台南市。 曾長生(1978)宜蘭縣清水及土場區地質及地熱產狀。台灣石油地質,第15號,第 11-23頁。 劉瀚方(2013)清水地熱地區之微震與震波走時層析成像。臺灣大學地質科學研究所學位論文,1-57。 羅偉(2012)宜蘭清水和鄰近地熱區地質圖測製和地質構造分析。行政院國家科學委員會能源型國家科技計畫。 蕭寶宗、江新春 (1979),Geology and Geothermal System of the Chingshui-Tuchang Geothermal Area, Ilan, Taiwan,臺灣石油地質,16卷頁205-213。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86153 | - |
dc.description.abstract | 近年來因應氣候變遷和溫室氣體的排放,政府規劃和發布2050年淨零排放的路徑。其中,綠色能源為重要的選項,而地熱能可當基載電力且用地小的特性,為重要的綠色能源選項之一。宜蘭清水地熱區為台灣開發最早的地熱區,位於中新世廬山層,主要由透水性差之板岩所組成。工業技術研究院和中國石油公司於1972年開始進行探勘研究,期間共鑽井19口,發現產能佳並在1981年建置了3MWe的地熱示範電廠,但最終因生產過程降壓熱水不足和管線結垢,而在1993年停止運轉。清水地熱電廠在2021年重新啟用,並綜合前人在野外地質、地球物理及地球化學上的調查結果,規劃利於電廠持續運作的措施。其中尾水回注為一項維持儲集層壓力以及補注儲集層熱水的重要技術。要確定回注井的佈置,其中一項直接且有用的技術為地化示蹤劑試驗。示蹤劑試驗是了解地下儲集層各種特性的簡單方法之一,提供傳統調查方法無法獲得的優勢流體流動網絡。鑽井擠注適量化學混合物的水體作為示蹤劑,進入地下後於其他生產井定時收取水體,並分析水體中所含示蹤劑的量,然後綜合地質背景建立地質模型以獲得地下流體及儲集層參數。本研究選用2,6 -萘二磺酸鈉,萘磺酸類常用於地熱示蹤劑,其符合熱穩定性佳、低偵測極限、低自然背景濃度、無吸收率、無毒性及低成本,適合用於清水地熱區的研究。採集之水樣利用高效液相層析儀進行分析,獲得示蹤劑濃度對時間的變化圖。利用示蹤劑突破曲線之特性包含峰值的位置、數量和突破時間等等形貌上的特徵進行定性分析,再使用動差分析法,估算其在裂隙介質中流體的平均滯留時間、掃略體積以及流動容量儲存容量圖等,並綜合兩分析方法特性了解清水地熱區之井間裂隙連通性,包含裂隙破碎程度與管道連通性。同時提供清水地區更為精確的井間裂隙參數,如異質性參數。並進一步綜合前人地質模型可以提供清水地熱區更高解析度的裂隙密度分布。結果顯示,各點位與IC-09井間連通性以往北及往西最低,往東南方向則有較好的連通性,綜合前人之裂隙量測與研究可發現點位連通性之方位大致與導水裂隙相符,且可提供更精細的導水裂隙延伸性。 | zh_TW |
dc.description.abstract | Geothermal energy is regarded as an important green energy in terms of it’s characteristics of base load power and small land occupy. The Chingshui geothermal field was built the first geothermal power plant which is located in south-west of Yilan Plain, Taiwan. Itis predominantly composed of slate, which is poor permeable. The Industrial Technology Research Institute (ITRI) and Taiwan CPC, drilled 19 wells with depths ranging from few hundreds to over three thousands meters and constructed a 3 MW geothermal power plant. It operated 12.5 years and shut down in 1993 due to pressure drop and scaling quickly in the wells. After re-evaluated by new data of geology, geophysics, geochemistry and well testing, this geothermal field constructed and operated a new geothermal power plantin 2021 However, to recharge fluid for maintaining pressure in reservoir for long term operations, the reinjection is an important technique. To understand reinjection efficiency and fluid circulation in fractures between wells, the tracer test is a relatively simple and useable method. In this research, use 2, 6-NDS chemicals as tracer to conduct a test in shallow wells, the R1, R5 and R3, deep well, the IC-19 & 21 as production wells, and the IC-09 as injection well in the Chingshui geothermal field. Then use the instrument, the high performance liquid chromatography (HPLC) to analyze the concentrations of tracer in samples and construct a breakthrough curve for every wells and outcrop. Meanwhile, use qualitative analysis to understand relationships between peaks in breakthrough curves and possible fracture connectivity; and quantitative analysis to understand the swept volume, flow geometry and heterogeneity. Finally, we combine all results to construct a fracture distribution conceptual model This conceptual model provides detailed fracture connectivity between wells and more information for the future deploy of reinjection well locations in the Chingshui geothermal field. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:39:23Z (GMT). No. of bitstreams: 1 U0001-2509202215472600.pdf: 4750923 bytes, checksum: 38ed5c010bdc23d342c150caf241c940 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii 口試委員審定書 v 目錄 vi 圖目錄 viii 表目錄 x 第一章、前言 1 第二章、清水地熱區地質背景 3 地質背景 3 清水地熱區區域地質 3 現地裂隙量測與解釋 5 地球物理解釋 6 大地電磁法判釋 6 微震以及二氧化碳含量模擬 7 地球化學解釋 7 熱水地球化學 7 地球物理與地球化學小結 8 井間測試 8 井干擾測試 8 示蹤劑試驗 12 第三章、示蹤劑試驗方法、原理和施作 14 示蹤劑試驗設計 14 示蹤劑試驗目的 14 示蹤劑選用 14 示蹤劑投入量預估 17 示蹤劑試驗施作 18 現地實驗流程規劃 18 採樣方法 24 示蹤劑試驗化學分析 24 高效液相層析儀(HPLC) 24 示蹤劑試驗資料解析(tracer interpretation) 30 示蹤劑試驗定性分析(Tracer data qualitative interpretation) 30 示蹤劑試驗定量分析(Tracer data quantitative interpretation) 36 動差分析法(Method of Moment) 36 第四章、示蹤資料分析結果 46 示蹤劑現地實驗執行 46 採樣地點與現地記錄 46 化學分析結果 48 示蹤劑試驗資料分析結果 48 示蹤劑試驗定性分析結果 48 示蹤劑試驗定量分析結果 53 第五章、討論 55 示蹤劑產生多波峰突破曲線之解釋 55 示蹤劑突破曲線與點位間裂隙的關係 57 井間裂隙通道之複雜程度 62 清水地熱區井間裂隙模式 64 第六章、 結論 67 第七章、參考文獻 68 附錄 75 | |
dc.language.iso | zh-TW | |
dc.title | 利用示蹤劑研究清水地熱區儲集層裂隙特性 | zh_TW |
dc.title | Applying Tracer Test to Study Fracture Characteristics of Reservoir on the Chingshui Geothermal Field | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭欽慧(Ching-Huei Kuo),郭家瑋(Chia-Wei Kuo),盧乙嘉(Yi-Chia Lu) | |
dc.subject.keyword | 地熱探勘,地化示蹤劑,儲集層模型,地熱發電, | zh_TW |
dc.subject.keyword | geothermal exploration,Tracer test,Reservoir conceptual model,Geothermal power plant, | en |
dc.relation.page | 77 | |
dc.identifier.doi | 10.6342/NTU202204005 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-29 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-20 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2509202215472600.pdf | 4.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。