請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86141
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 閔明源 | zh_TW |
dc.contributor.advisor | Ming-Yuan Min | en |
dc.contributor.author | 詹鎬 | zh_TW |
dc.contributor.author | Hao Chan | en |
dc.date.accessioned | 2023-03-19T23:38:48Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2022-09-07 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Aghajanian G. K. (1985). Modulation of a transient outward current in serotonergic neurones by alpha 1-adrenoceptors. Nature, 315(6019), 501–503.
Aghajanian, G. K., & VanderMaelen, C. P. (1982). alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science (New York, N.Y.), 215(4538), 1394–1396. Aghajanian, G. K., Cedarbaum, J. M., & Wang, R. Y. (1977). Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain research, 136(3), 570–577. Andrade, R., & Aghajanian, G. K. (1984). Locus coeruleus activity in vitro: intrinsic regulation by a calcium-dependent potassium conductance but not alpha 2-adrenoceptors. The Journal of neuroscience : the official journal of the Society for Neuroscience, 4(1), 161–170. Arima, J., Kubo, C., Ishibashi, H., & Akaike, N. (1998). alpha2-Adrenoceptor-mediated potassium currents in acutely dissociated rat locus coeruleus neurones. The Journal of physiology, 508 ( Pt 1)(Pt 1), 57–66. Aston-Jones, G., & Bloom, F. E. (1981). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1(8), 876–886. Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. The Journal of neuroscience : the official journal of the Society for Neuroscience, 14(7), 4467–4480. Aston-Jones, G., Chiang, C., & Alexinsky, T. (1991). Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Progress in brain research, 88, 501–520. Aston-Jones, G., Zhu, Y., & Card, J. P. (2004). Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(9), 2313–2321. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual review of neuroscience, 28, 403–450. Bouret, S., & Sara, S. J. (2004). Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. The European journal of neuroscience, 20(3), 791–802. Bouret, S., & Sara, S. J. (2005). Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends in neurosciences, 28(11), 574–582. Carter, Matthew E et al. (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature neuroscience, 13(12), 1526–1533. Cedarbaum, J. M., & Aghajanian, G. K. (1976). Noradrenergic neurons of the locus coeruleus: inhibition by epinephrine and activation by the alpha-antagonist piperoxane. Brain research, 112(2), 413–419. Chen, F. J., & Sara, S. J. (2007). Locus coeruleus activation by foot shock or electrical stimulation inhibits amygdala neurons. Neuroscience, 144(2), 472–481. Clayton, E. C., Rajkowski, J., Cohen, J. D., & Aston-Jones, G. (2004). Phasic activation of monkey locus ceruleus neurons by simple decisions in a forced-choice task. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(44), 9914–9920. Duan X, Nagel G, Gao S. (2019) Mutated Channelrhodopsins with Increased Sodium and Calcium Permeability. Applied Sciences. 2019; 9(4):664. Ennis, M., & Aston-Jones, G. (1986). Evidence for self- and neighbor-mediated postactivation inhibition of locus coeruleus neurons. Brain research, 374(2), 299–305. Foote, S. L., & Morrison, J. H. (1987). Extrathalamic modulation of cortical function. Annual review of neuroscience, 10, 67–95. Grella, Stephanie L et al. (2019). Locus Coeruleus Phasic, But Not Tonic, Activation Initiates Global Remapping in a Familiar Environment. The Journal of neuroscience : the official journal of the Society for Neuroscience, 39(3), 445–455. Huang, Hong-Ping et al. (2012). Physiology of quantal norepinephrine release from somatodendritic sites of neurons in locus coeruleus. Frontiers in molecular neuroscience, 5, 29. https://doi.org/10.3389/fnmol.2012.00029 Jedema, Hank P et al. (2008). Chronic cold exposure increases RGS7 expression and decreases alpha(2)-autoreceptor-mediated inhibition of noradrenergic locus coeruleus neurons. The European journal of neuroscience, 27(9), 2433–2443. Jodo, E., Chiang, C., & Aston-Jones, G. (1998). Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience, 83(1), 63–79. Jodo, E., & Aston-Jones, G. (1997). Activation of locus coeruleus by prefrontal cortex is mediated by excitatory amino acid inputs. Brain research, 768(1-2), 327–332. Kawano, H., Mitchell, S. B., Koh, J. Y., Goodman, K. M., & Harata, N. C. (2020). Calcium-induced calcium release in noradrenergic neurons of the locus coeruleus. Brain research, 1729, 146627. Lu, Y., Simpson, K. L., Weaver, K. J., & Lin, R. C. (2012). Differential distribution patterns from medial prefrontal cortex and dorsal raphe to the locus coeruleus in rats. Anatomical record (Hoboken, N.J. : 2007), 295(7), 1192–1201. Marzo, A., Bai, J., & Otani, S. (2009). Neuroplasticity regulation by noradrenaline in mammalian brain. Current neuropharmacology, 7(4), 286–295. Matschke, Lina A et al. (2015). A concerted action of L- and T-type Ca(2+) channels regulates locus coeruleus pacemaking. Molecular and cellular neurosciences, 68, 293–302. Matschke, L. A., Rinné, S., Snutch, T. P., Oertel, W. H., Dolga, A. M., & Decher, N. (2018). Calcium-activated SK potassium channels are key modulators of the pacemaker frequency in locus coeruleus neurons. Molecular and cellular neurosciences, 88, 330–341. Neves, R. M., van Keulen, S., Yang, M., Logothetis, N. K., & Eschenko, O. (2018). Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex. Journal of neurophysiology, 119(3), 904–920. Pieribone, V. A., Nicholas, A. P., Dagerlind, A., & Hökfelt, T. (1994). Distribution of alpha 1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes. The Journal of neuroscience : the official journal of the Society for Neuroscience, 14(7), 4252–4268. Plummer, Nicholas W et al. (2020). An Intersectional Viral-Genetic Method for Fluorescent Tracing of Axon Collaterals Reveals Details of Noradrenergic Locus Coeruleus Structure. eNeuro, 7(3), ENEURO.0010-20.2020. Ramos, B. P., & Arnsten, A. F. (2007). Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacology & therapeutics, 113(3), 523–536. Rajkowski, J., Majczynski, H., Clayton, E., & Aston-Jones, G. (2004). Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task. Journal of neurophysiology, 92(1), 361–371. Sah, P., & Faber, E. S. (2002). Channels underlying neuronal calcium-activated potassium currents. Progress in neurobiology, 66(5), 345–353. Schwarz, Lindsay A et al. (2015). Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature, 524(7563), 88–92. Scheinin, M et al. (1994). Distribution of alpha 2-adrenergic receptor subtype gene expression in rat brain. Brain research. Molecular brain research, 21(1-2), 133–149. Schwarz, L. A., & Luo, L. (2015). Organization of the locus coeruleus-norepinephrine system. Current biology : CB, 25(21), R1051–R1056. Séguéla, P., Watkins, K. C., Geffard, M., & Descarries, L. (1990). Noradrenaline axon terminals in adult rat neocortex: an immunocytochemical analysis in serial thin sections. Neuroscience, 35(2), 249–264. Stocker, M., Hirzel, K., D'hoedt, D., & Pedarzani, P. (2004). Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon : official journal of the International Society on Toxinology, 43(8), 933–949. Timmons, S. D., Geisert, E., Stewart, A. E., Lorenzon, N. M., & Foehring, R. C. (2004). alpha2-Adrenergic receptor-mediated modulation of calcium current in neocortical pyramidal neurons. Brain research, 1014(1-2), 184–196. Ting, J. T., Daigle, T. L., Chen, Q., & Feng, G. (2014). Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods in molecular biology (Clifton, N.J.), 1183, 221–242. Uematsu, A., Tan, B. Z., & Johansen, J. P. (2015). Projection specificity in heterogeneous locus coeruleus cell populations: implications for learning and memory. Learning & memory (Cold Spring Harbor, N.Y.), 22(9), 444–451. Vazey, E. M., Moorman, D. E., & Aston-Jones, G. (2018). Phasic locus coeruleus activity regulates cortical encoding of salience information. Proceedings of the National Academy of Sciences of the United States of America, 115(40), E9439–E9448. Xiang, L., Harel, A., Gao, H., Pickering, A. E., Sara, S. J., & Wiener, S. I. (2019). Behavioral correlates of activity of optogenetically identified locus coeruleus noradrenergic neurons in rats performing T-maze tasks. Scientific reports, 9(1), 1361. Zhong, H., & Minneman, K. P. (1999). Alpha1-adrenoceptor subtypes. European journal of pharmacology, 375(1-3), 261–276. Zhao, Y., Fang, Q., Straub, S. G., Lindau, M., & Sharp, G. W. (2010). Noradrenaline inhibits exocytosis via the G protein βγ subunit and refilling of the readily releasable granule pool via the α(i1/2) subunit. The Journal of physiology, 588(Pt 18), 3485–3498. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86141 | - |
dc.description.abstract | 藍斑核為腦中主要正腎上腺素來源,參與如警覺、清醒睡眠等多種反應。藍斑核有著持續、低頻的tonic activity與短暫高頻的phasic activity兩種模式,在近年的研究中發現phasic activity可能參與意識轉移與優化行為表現等複雜認知功能。phasic activity常常由伴隨著一段長時間的抑制(PSI),可能扮演過濾外界雜訊的功能。關於PSI我們提出三種假說。首先,藍斑核可能釋放正腎上腺素活化自身抑制性α2正腎上腺素受體來造成抑制。其次,藍斑核phasic activity可能活化SK、BK與IK等鈣活化鉀離子通道造成抑制。最後,藍斑核也可能透過以phasic activity刺激週邊抑制性中間神經元來達到對自身進行抑制的現象。實驗中,我們透過腦片電生理的方式紀錄人工誘發phasic-like activity並觀察其後的抑制現象。結果顯示自發tonic activity頻率與PSI持續時間呈現負相關。藥理測驗則顯示α2-正腎上腺素受體抑制劑 (idazoxan)、SK通道抑制劑 (apamin) 與GABAb受體抑制劑 (cgp54626) 皆可縮短PSI持續時間,顯示α2-正腎上腺素受體、SK通道與GABAb受體應皆有參與PSI的產生。 | zh_TW |
dc.description.abstract | Locus Coeruleus (LC) is the main source of Norepinephrine (NE) in the brain, involving in vigilance, arousal and wake sleep cycle. There are two kinds of firing pattern of LC, continuous low frequency tonic activity and brief high frequency phasic activity. Recent studies have shown that LC phasic activity may participate in complex cognitive function like cognitive shift and optimizing performance. Post stimulation inhibition (PSI) is often observed following phasic activity, which may benefit performance by filtering out distractions. We proposed three possible mechanisms of PSI. First, auto-releasing NE from LC neurons may bind to inhibitory α2-adrenoreceptor (α2-AR) causing PSI. Second, phasic activity may activate calcium-dependent potassium channel (SK, BK and IK channel) causing PSI. Last, LC phasic activity may stimulate surrounding inhibitory interneurons causing PSI. We conduct ex-vivo brain slice electrophysiology on LC neurons, and investigate in mechanism underlying inhibition following manually induced phasic like burst activity. We found that baseline spontaneous firing rate is negatively related to PSI duration, and that α2-AR antagonist idazoxan, SK channel blocker apamin and GABAb receptor blocker cgp54626 could all reduce PSI duration, suggesting that α2-AR, SK channel and GABAb receptor all take part in PSI. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:38:48Z (GMT). No. of bitstreams: 1 U0001-0509202218175000.pdf: 1551782 bytes, checksum: bc90d64819127f1f67aafcedaaad2d74 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 …………………………………………………………………….i
致謝 …………………………………………………………………………………...ii 中文摘要 …………………………………………………………………………….iii Abstract ………………………………………………………………………………iv Content ……………………………………………………………………………….vi Chapter 1. Introduction ………………………………………………………………1 1.1 Locus Coeruleus and Norepinephrine system …………………………………...1 1.2 LC tonic and phasic activity ……………………………………………………..2 1.3 Post stimulation inhibition (PSI) …………………………………………….......3 1.4 Possible mechanisms underlying poststimulation inhibition (PSI) ………………4 1.5 Aim of this study …………………………………………………………………6 Chapter 2. Material and Methods ……………………………………………………7 2.1 Animals ………………………………………………………………………......7 2.2 Acute brain slices preparation ……………………………………………………7 2.3 Electrophysiologic experiments …………………………………………………8 2.4 PSI duration measurement …………………………………………………….....9 2.5 Optogenetic induced outward current …………………………………………..11 2.6 Immunohistochemistry (IHC) staining …………………………………………11 2.7 Data analysis ……………………………………………………………………12 Chapter 3. Result …………………………………………………………………….13 3.1 Baseline activity and PSI duration ……………………………………………...13 3.2 PSI duration of optogenetic and I-injection induced burst ……………………...14 3.3 Effects of α2-AR on PSI : idazoxan decrease PSI duration ……………………..16 3.4 Effects of extracellular calcium concentration on PSI ………………………….17 3.5 Effects of Kca channels on PSI : apamin decrease PSI duration ………………...18 3.5.1 Whole-cell recording with 2 mM EGTA internal buffer …………………..18 3.5.2 Extracellular attach recording ……………………………………………...19 3.5.3 Whole cell recoding with 0.1 mM EGTA internal ………………………….20 3.6 Effects of GABAb receptor on PSI : cgp54626 decrease PSI duration …………21 3.7 Summary ………………………………………………………………………...21 Chapter 4. Discussion ………………………………………………………………...22 4.1 Experimental limitations ………………………………………………………...22 4.1.1 Norepinephrine supply in acute slices ……………………………………...22 4.1.2 Induced burst activity vs spontaneous phasic activity ……………………...23 4.1.3 optogenetic stimulation ……………………………………………………..23 4.2 Inhibition between LC neurons …………………………………………………24 4.2.1 Efferent subpopulation of LC ………………………………………………24 4.2.2 Lateral inhibition on non-phasic LC neurons ………………………………24 Chapter 5. Reference …………………………………………………………………26 Chapter 6. Figures ……………………………………………………………………33 Figure 1. PSI duration testing set up ………………………………………………...33 Figure 2. PSI duration under different baseline activity …………………………….34 Figure 3. Optogenetic stimulation on driven and non-driven neurons ……………..35 Figure 4. Effects of idazoxan on PSI of I-injection or optogenetic induced burst …...36 Figure 5. Outward current following optogenetic stimulation ……………………...37 Figure 6. Effects of low aCSF Calcium concentration on PSI ………………………...38 Figure 7. Effects of KCa channel blockers on PSI …………………………………...39 Figure 8. Effects of KCa channel blockers on PSI (cell-attach recording) …………..41 Figure 9. Effects of KCa channel blockers on PSI (low EGTA) ……………………..43 Figure 10. Effects of GABAb blocker on PSI ………………………………………….44 Figure 11. Correlation of PSI duration with baseline activity and burst activity ……45 | - |
dc.language.iso | zh_TW | - |
dc.title | 藍斑核活化後長抑制反應機制探討 | zh_TW |
dc.title | Investigation of mechanisms underlying post-stimulation inhibition in locus coeruleus | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.author-orcid | 0000-0001-9771-1869 | |
dc.contributor.oralexamcommittee | 陳示國;徐經倫;楊琇雯 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Kuo Chen;Ching-Lung Hsu;Hsiu-Wen Yan | en |
dc.subject.keyword | 藍斑核,正腎上腺素,抑制性中間神經元,鈣活化鉀離子通道,phasic反應, | zh_TW |
dc.subject.keyword | locus coeruleus,Norepinephrine,inhibitory interneuron,Calcium dependent potassium channel,phasic activity, | en |
dc.relation.page | 45 | - |
dc.identifier.doi | 10.6342/NTU202203169 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-09-07 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生命科學系 | - |
dc.date.embargo-lift | 2025-09-01 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 此日期後於網路公開 2025-09-01 | 1.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。