請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86139
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭安妮(Annie On-Lei Kwok) | |
dc.contributor.author | Heng-Jui Lee | en |
dc.contributor.author | 李珩睿 | zh_TW |
dc.date.accessioned | 2023-03-19T23:38:42Z | - |
dc.date.copyright | 2022-09-12 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-07 | |
dc.identifier.citation | 1. Alshameri, B., Madun, A., & Bakar, I. (2017). Comparison of the effect of fines content and density towards the shear strength parameters. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 48(2), 104-110. 2. Araujo, W., & Ledezma, C. (2020). Factors that affect liquefaction-induced lateral spreading in large subduction earthquakes. Applied Sciences, 10(18), 6503. 3. ASTM D422–63. (2007). Standard test methods for particle-size analysis of soils. ASTM International, West Conshohocken, PA 4. ASTM D5311–11. (2011). Standard test methods for load controlled cyclic triaxial strength of soil. ASTM International, West Conshohocken, PA. 5. ASTM D6836–16. (2019). Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge. ASTM International, West Conshohocken, PA. 6. ASTM D854–10. (2010). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA. 7. Bocking, K. A., & Fredlund, D. G. (1980). Limitations of the axis translation technique. In Expansive Soils (pp. 117-135). ASCE. 8. Committee on Soil Dynamics of the Geotechnical Engineering Division (1978). 'Definition of Terms Related to Liquefaction.' Journal of Geotechnical Engineering, 104(GT9), 1197-1120. 9. Elkady, T. Y., Dafalla, M. A., Al-Mahbashi, A. M., & Al Shamrani, M. (2013). Evaluation of soil water characteristic curves of sand-clay mixtures. GEOMATE Journal, 4(8), 528-532. 10. Ellithy, G. S., Vahedifard, F., & Rivera-Hernandez, X. A. (2012). Accuracy assessment of predictive SWCC models for estimating the van Genuchten model parameters. In PanAm Unsaturated Soils 2017 (pp. 1-10). 11. Eyo, E. U., Ng'ambi, S., & Abbey, S. J. (2020). An overview of soil–water characteristic curves of stabilised soils and their influential factors. Journal of King Saud University-Engineering Sciences. 12. Fredlund, D. G. (2006). Unsaturated soil mechanics in engineering practice. Journal of geotechnical and geoenvironmental engineering, 132(3), 286-321. 13. Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons. 14. Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian geotechnical journal, 31(4), 521-532. 15. Hosseini, S. M. R., Naeini, S. A., & Hassanlourad, M. (2017). Monotonic, cyclic and post-cyclic behaviour of an unsaturated clayey soil. International Journal of Geotechnical Engineering, 11(3), 225-235. 16. Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique, 43(3), 351-451. 17. Ishihara, K., & Tsukamoto, Y. (2004). Cyclic strength of imperfectly saturated sands and analysis of liquefaction. Proceedings of the Japan Academy, Series B, 80(8), 372-391. 18. Janalizadeh Choobbasti, A., Selatahneh, H., & Karimi Petanlar, M. (2020). Effect of fines on liquefaction resistance of sand. Innovative Infrastructure Solutions, 5(3), 1-16. 19. Jiaer, W. U., Kammerer, A. M., Riemer, M. F., Seed, R. B., & Pestana, J. M. (2004, August). Laboratory study of liquefaction triggering criteria. In 13th world conference on earthquake engineering, Vancouver, BC, Canada, Paper (No. 2580). 20. Jiang, X., Wu, L., & Wei, Y. (2020). Influence of fines content on the soil–water characteristic curve of unsaturated soils. Geotechnical and Geological Engineering, 38(2), 1371-1378. 21. Kim, U. G., Zhuang, L., Kim, D., & Lee, J. (2017). Evaluation of cyclic shear strength of mixtures with sand and different types of fines. Marine Georesources & Geotechnology, 35(4), 447-455. 22. Kim, U., Kim, D., & Zhuang, L. (2016). Influence of fines content on the undrained cyclic shear strength of sand–clay mixtures. Soil Dynamics and Earthquake Engineering, 83, 124-134. 23. Kramer, S. L., & Seed, H. B. (1988). Initiation of soil liquefaction under static loading conditions. Journal of Geotechnical Engineering, 114(4), 412-430. 24. Lee, K.I., Lee, J., & Baek, W.J. (2009). Soil-Water Characteristic Curve of Weathered Granite Soils in Pocheon Area using Flow Pump Technique. Journal of The Korean Society of Agricultural Engineers, 51(1), 11–20. 25. Li, P. T. (2018). Measurement of Drying and Wetting SWCCs by Flow Pump Method. Master’s thesis, National Taiwan University, Taiwan. 26. Lien, C. Y. (2018). Dynamic properties of Penghu calcareous sand by resonant column and cyclic triaxial tests. Master’s thesis, National Taiwan University, Taiwan. 27. Lin, B., & Cerato, A. B. (2012). Investigation on soil–water characteristic curves of untreated and stabilized highly clayey expansive soils. Geotechnical and Geological Engineering, 30(4), 803-812. 28. Liu, J. R. (2020a). Influence of Fines Contents on Soil Liquefaction Resistance in Cyclic Triaxial Test. Geotechnical and Geological Engineering, 38(5), 4735-4751. 29. Liu, J. R. (2020b). Experimental Investigation of the Liquefaction Behavior of Unsaturated Sandy Soil under Cyclic Loading. Master’s thesis, National Taiwan University, Taiwan. 30. Marto, A., Tan, C. S., Makhtar, A. M., & Jusoh, S. N. (2016). Cyclic behaviour of Johor sand. GEOMATE Journal, 10(21), 1891-1898. 31. Mavroulis, S., Lekkas, E., & Carydis, P. (2021). Liquefaction Phenomena Induced by the 26 November 2019, Mw= 6.4 Durrës (Albania) Earthquake and Liquefaction Susceptibility Assessment in the Affected Area. Geosciences, 11(5), 215. 32. Menezes, L. P., Oliveira Filho, W. L., & Silva, C. H. C. (2015). Determination of the Soil Water Retention Curve Using the Flow Pump. Rem: Revista Escola de Minas, 68, 207-213. 33. Miller CJ, Yesiller N, Yaldo K, Merayyan S (2002) Impact of soil type and compaction conditions on soil water characteristic. J Geotech Geoenviron Eng 128(9):733–742 34. Mogami, T. & Kubo, K. (1953). The behaviour of soil during vibration. Proc. 3rd Int. Conf Soil Mech., 1, 152-153. 35. Mojezi, M., Jafari, M. K., & Biglari, M. (2015). Effects of mean net stress and cyclic deviatoric stress on the cyclic behavior of normally consolidated unsaturated kaolin. International Journal of Civil Engineering, 13(3), 175-184. 36. Noda, S., & Hyodo, M. (2013, January). Effects of fines content on cyclic shear characteristics of sand-clay mixtures. In Proceedings of the Eighteenth International Soil Mechanics and Geotechnical Engineering Conference (pp. 1551-1554). 37. Okamura, M., & Noguchi, K. (2009). Liquefaction resistances of unsaturated non-plastic silt. Soils and Foundations, 49(2), 221-229. 38. Pandya, S., & Sachan, A. (2018). Effect of matric suction and initial static loading on dynamic behaviour of unsaturated cohesive soil. International Journal of Geotechnical Engineering, 12(5), 438-448. 39. Prakasha, K. S., & Chandrasekaran, V. S. (2005). Behavior of marine sand-clay mixtures under static and cyclic triaxial shear. Journal of geotechnical and geoenvironmental engineering, 131(2), 213-222. 40. Reddi, L. N., & Bonala, M. V. (1997). Critical shear stress and its relationship with cohesion for sand. kaolinite mixtures. Canadian geotechnical journal, 34(1), 26-33. 41. Safdar, M. (2018). Monotonic stress-strain behaviour of fibre reinforced cemented Toyoura sand. 42. Seed, H. B. and Lee, K. L. (1966). 'Liquefaction of saturated sands during cyclic loading.' Journal of Soil Mechanics and Foundations Division, ASCE, 92(SM6), 105-134. 43. Taban, A., Sadeghi, M. M., & Rowshanzamir, M. A. (2018). Estimation of van Genuchten SWCC model for unsaturated sands by means of the genetic programming. Scientia Iranica, 25(4), 2026-2038. 44. Tarantino, A., Romero, E., & Cui, Y. J. (Eds.). (2009). Laboratory and field testing of unsaturated soils (p. 220). Amsterdam, Netherlands 45. Terzaghi, K. & Peck, R. B. (1948). Soil mechanics in engineering practice. 2nd edn, p. 108. Chichester: Wiley. 46. Tinjum JM, Benson CH, Blotz LR (1997) Soil–water characteristic curves for compacted clays. J Geotech Geoenviron Eng 123(11):1060–1069 47. Unno, T., Kazama, M., Uzuoka, R., & Sento, N. (2008). Liquefaction of unsaturated sand considering the pore air pressure and volume compressibility of the soil particle skeleton. Soils and foundations, 48(1), 87-99. 48. Vanapalli, S. K., Nicotera, M. V., & Sharma, R. S. (2008). Axis translation and negative water column techniques for suction control. In Laboratory and field testing of unsaturated soils (pp. 33-48). Springer, Dordrecht. 49. Verdonck, P. J. (2019). Evaluation of the critical state line of sands to characterize their mechanical behavior under static and cyclic loading. Doctoral dissertation, Ph. D. thesis, Dept. of Civil Engineering, Ghent Univ. 50. Wang, W. C. (2018). Experimental Investigation of the Liquefaction Behavior of Unsaturated Sand with Non-plastic fines. Master’s thesis, National Taiwan University, Taiwan. 51. Yang, H., Rahardjo, H., Leong, E. C., and Fredlund, D. G. (2004). A study of infiltration on three sand capillary barriers. Can. Geotech. J., 41(4), 629–643. 52. Yang, X., & You, X. (2013). Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms. Applied Mathematics & Information Sciences, 7(5), 1977. 53. Youd, T.L. Application of MLR Procedure for Prediction of Liquefaction-Induced Lateral Spread Displacement., J. Geotech. Geoenvironmental Eng. 2018, 6, 144. 54. Zhang, B., Muraleetharan, K. K., & Liu, C. (2016). Liquefaction of unsaturated sands. International Journal of Geomechanics, 16(6), D4015002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86139 | - |
dc.description.abstract | 液化的發生是近年來時常探討的領域,然而,過往土壤液化行為的研究主要專注於飽和且土壤種類為砂土的條件下,對於非飽和的土壤甚至是含有黏土粒料的非飽和土壤並沒有太多的關注。為了瞭解非飽和砂土以及含有黏土粒料之非飽和砂土之液化行為,本研究利用GDS開發的動力三軸試驗儀進行一系列之非飽和含黏土粒料砂土之液化行為研究。不同飽和度、黏土粒料含量之試體在加載不同的循環應力之後可以計算得CSR以及LRR。另外,本研究亦利用令流量幫浦試驗得到土壤之SWCC曲線,即為土壤之土水特徵曲線,試體飽和度為利用抽出之水體積計算控制而得,在加載循環應力時,土壤試體之空氣壓力變化、孔隙水壓變化以及基質吸力變化都會被記錄。從結果得知,在試體中加入低於20%之黏土粒料將會使土壤之抗液化強度減少,降低試體之飽和度可以提昇其抗液化強度。當飽和度從100%下降至80%,含有黏土粒料之試體因減少飽和度所提升之抗液化強度相較於純砂試體為多。本研究所使用的實驗流程與改良之設備再經過一系列試驗結果觀察討論後可供後人進行非飽和土壤試驗之參考。 | zh_TW |
dc.description.abstract | Tens of thousands of earthquakes occur in Taiwan annually. Occasionally, some of them can be catastrophic which would lead to severe damages to buildings and infrastructures, as well as human injuries and casualties. Liquefaction is one of the earthquake-induced hazards. In the past, most studies focused on the liquefaction behavior of saturated sands. However, there were studies which indicated that liquefaction of unsaturated sands is also possible. In this study, a series of cyclic triaxial tests were conducted on unsaturated sands with clayey fines. The effects of degree of saturation and fines content on liquefaction resistance were investigated. The specimens were controlled to a target degree of saturation by using the flow pump method. Based on the laboratory test results, adding clayey fines to sands would decrease the liquefaction resistance, while decreasing the degree of saturation would have an opposite effect. Compared to clean sand, the liquefaction resistance of sand-clay mixtures would have a larger increase when the saturation was decreased from 100% to 80%. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:38:42Z (GMT). No. of bitstreams: 1 U0001-0609202216422300.pdf: 9526478 bytes, checksum: b5a470efb8e08b25f9e79d39b93c3ee4 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii TABLE OF CONTENTS iv List of Figures vii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Research Method 2 1.3 Thesis Organization 3 Chapter 2 Literature Review 4 2.1 Unsaturated Soil 4 2.1.1 Composition of Unsaturated Soil 4 2.1.2 Stress State of Unsaturated Soil 6 2.1.3 Soil-Water Characteristic Curve 8 2.1.4 Effect of Fines Content and Soil Condition on Soil-Water Characteristic Curve 10 2.1.5 Axis Translation Technique 13 2.1.6 Laboratory Testing of Unsaturated Soil 14 2.2 Liquefaction 17 2.2.1 Introduction of Soil Liquefaction 17 2.2.2 Liquefaction Failure Criteria 18 2.2.3 Laboratory Testing of Soil Liquefaction Resistance 21 2.2.4 Typical Liquefaction Behavior of Unsaturated Soil 23 2.2.5 Effects of Fines content on Soil Liquefaction resistance 27 Chapter 3 Experimental Program 31 3.1 Objectives 31 3.2 Apparatus 32 3.2.1 GDS Instrument System 32 3.2.2 Modified pedestal and High entry value ceramic plate 40 3.2.3 Flow pump device 42 3.3 Materials and Physical Properties 44 3.3.1 Silica Sand 44 3.3.2 Kaolinite 48 3.4 Soil-Water Characteristic Curve (SWCC) Test 51 3.4.1 Pressure Plate Test 51 3.4.2 Flow Pump Test 53 3.5 Procedure of Modified Isotropic Undrained Cyclic Triaxial Test 54 3.5.1 Step of Ceramic saturation 54 3.5.2 Step of Soil Preparation 56 3.5.3 Step of Specimen Remold 57 3.5.4 Step of Specimen Saturation 61 3.5.5 Step of Consolidation 67 3.5.6 Step of Docking 68 3.5.7 Step of Extracting Water from Specimen 70 3.5.8 Step of Isotropic Undrained Cyclic Loading 72 3.6 Discussions of Experimental Procedures and Testing Failure Reasons 73 Chapter 4 Experimental Results and Discussions 75 4.1 Results and Discussions of Soil-Water Characteristic Curve of Sand with Plastic Fines 75 4.2 Results and Discussions of Modified Cyclic Triaxial Test 77 4.2.1 Saturated Sand with Fines Content Specimens 80 4.2.2 Unsaturated Sand with Various Fines Content 87 4.2.3 Specimen Shape after Liquefaction 97 4.2.4 Effects of Degree of Saturation and Fines Content on Liquefaction Curves 98 4.2.5 Liquefaction Resistance of Saturated and Unsaturated Sand-Clay Mixtures 101 Chapter 5 Conclusions and Recommendations 104 5.1 Conclusions 104 5.2 Recommendations for Future Researches 106 REFERENCES 107 Appendix 114 | |
dc.language.iso | zh-TW | |
dc.title | 以實驗方法探討非飽和含黏土粒料砂土之液化行為研究 | zh_TW |
dc.title | Experimental Investigation on Dynamic Properties and Liquefaction Behavior of Unsaturated Sand with Clayey Fines | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊國鑫(Kuo-Hsin Yang),鄧福宸(Fu-chen Teng) | |
dc.subject.keyword | 非飽和土壤,土壤液化,基質吸力,動三軸試驗, | zh_TW |
dc.subject.keyword | Unsaturated soil,Liquefaction,Matric Suction,Cyclic Triaxial Test, | en |
dc.relation.page | 143 | |
dc.identifier.doi | 10.6342/NTU202203201 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-07 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-12 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0609202216422300.pdf | 9.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。