Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86136
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭梅君zh_TW
dc.contributor.advisorMei-Chun Chengen
dc.contributor.author林雯琪zh_TW
dc.contributor.authorWen-Chi Linen
dc.date.accessioned2023-03-19T23:38:33Z-
dc.date.available2023-08-10-
dc.date.copyright2022-10-08-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAbe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., & Shinozaki, K. (1997). Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. The Plant Cell, 9(10), 1859–1868.
Allen, M. D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., & Suzuki, M. (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal, 17(18), 5484–5496.
Asamizu, E., Shimoda, Y., Kouchi, H., Tabata, S., & Sato, S. (2008). A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus. Plant Physiology, 147(4), 2030–2040.
Berrocal-Lobo, M., Molina, A., & Solano, R. (2002). Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal: for cell and molecular biology, 29(1), 23–32.
Cao, S., Wang, Y., Li, X., Gao, F., Feng, J., & Zhou, Y. (2020). Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus. Plants (Basel, Switzerland), 9(4), 455.
Çevik, V., Kidd, B. N., Zhang, P., Hill, C., Kiddle, S., Denby, K. J., Holub, E. B., Cahill, D. M., Manners, J. M., Schenk, P. M., Beynon, J., & Kazan, K. (2012). MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiology, 160(1), 541–555.
Chaharbakhshi, E., & Jemc, J. C. (2016). Broad-complex, tramtrack, and bric-à-brac (BTB) proteins: Critical regulators of development. Genesis (New York, N.Y.: 2000), 54(10), 505–518.
Chen, H., Huang, X., Gusmaroli, G., Terzaghi, W., Lau, O. S., Yanagawa, Y., Zhang, Y., Li, J., Lee, J. H., Zhu, D., & Deng, X. W. (2010). Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. The Plant Cell, 22(1), 108–123.
Cheng, M. C., Kuo, W. C., Wang, Y. M., Chen, H. Y., & Lin, T. P. (2017). UBC18 mediates ERF1 degradation under light-dark cycles. The New Phytologist, 213(3), 1156–1167.
Cheng, M. C., Liao, P. M., Kuo, W. W., & Lin, T. P. (2013). The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology, 162(3), 1566–1582.
Cohen-Peer, R., Schuster, S., Meiri, D., Breiman, A., & Avni, A. (2010). Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Plant Molecular Biology, 74(1-2), 33–45.
Deng, X. W., Caspar, T., & Quail, P. H. (1991). cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes & Development, 5(7), 1172–1182.
Desterro, J. M., Rodriguez, M. S., & Hay, R. T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Molecular Cell, 2(2), 233–239.
Dietz, K. J., Vogel, M. O., & Viehhauser, A. (2010). AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma, 245(1-4), 3–14.
El Mahi, H., Pérez-Hormaeche, J., De Luca, A., Villalta, I., Espartero, J., Gámez-Arjona, F., Fernández, J. L., Bundó, M., Mendoza, I., Mieulet, D., Lalanne, E., Lee, S. Y., Yun, D. J., Guiderdoni, E., Aguilar, M., Leidi, E. O., Pardo, J. M., & Quintero, F. J. (2019). A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiology, 180(2), 1046–1065.
Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K., Ishiyama, K., Kobayashi, M., Nakasone, S., Yamada, K., Ito, T., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2009). Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant & Cell Physiology, 50(12), 2123–2132.
Gao, T., Li, G. Z., Wang, C. R., Dong, J., Yuan, S. S., Wang, Y. H., & Kang, G. Z. (2018). Function of the ERFL1a transcription factor in Wheat responses to water deficiency. International Journal of Molecular Sciences, 19(5), 1465.
Gibbs, D. J., Lee, S. C., Isa, N. M., Gramuglia, S., Fukao, T., Bassel, G. W., Correia, C. S., Corbineau, F., Theodoulou, F. L., Bailey-Serres, J., & Holdsworth, M. J. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature, 479(7373), 415–418.
Guo, L., Nezames, C. D., Sheng, L., Deng, X., & Wei, N. (2013). Cullin-RING ubiquitin ligase family in plant abiotic stress pathways(F). Journal of Integrative Plant Biology, 55(1), 21–30.
Guo, R., & Sun, W. (2017). Sumoylation stabilizes RACK1B and enhance its interaction with RAP2.6 in the abscisic acid response. Scientific Reports, 7, 44090.
Han, D., Lai, J., & Yang, C. (2021). SUMOylation: A critical transcription modulator in plant cells. Plant Science: an international journal of experimental plant biology, 310, 110987.
Han, X., Huang, X., & Deng, X. W. (2020). The photomorphogenic central repressor COP1: Conservation and functional diversification during evolution. Plant Communications, 1(3), 100044.
Heyman, J., & De Veylder, L. (2012). The anaphase-promoting complex/cyclosome in control of plant development. Molecular Plant, 5(6), 1182–1194.
Hicke, L., & Dunn, R. (2003). Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annual Review of Cell and Developmental Biology, 19, 141–172.
Hoecker U. (2017). The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. Current Opinion in Plant Biology, 37, 63–69.
Hoecker, U., & Quail, P. H. (2001). The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. The Journal of Biological Chemistry, 276(41), 38173–38178.
Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., & Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 12987–12992.
Huang. (2022). Investigating the interaction between ERF1 and COP1 and their functions in light-stress signaling crosstalk in Arabidopsis. Department of Biochemical Science and Technology
Iconomou, M., & Saunders, D. N. (2016). Systematic approaches to identify E3 ligase substrates. The Biochemical Journal, 473(22), 4083–4101.
Jofuku, K. D., den Boer, B. G., Van Montagu, M., & Okamuro, J. K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell, 6(9), 1211–1225.
Kathare, P. K., Xu, X., Nguyen, A., & Huq, E. (2020). A COP1-PIF-HEC regulatory module fine-tunes photomorphogenesis in Arabidopsis. The Plant Journal: for cell and molecular biology, 104(1), 113–123.
Kelley, D. R., & Estelle, M. (2012). Ubiquitin-mediated control of plant hormone signaling. Plant Physiology, 160(1), 47–55.
Kerscher, O., Felberbaum, R., & Hochstrasser, M. (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annual Review of Cell and Developmental Biology, 22, 159–180.
Knipscheer, P., Flotho, A., Klug, H., Olsen, J. V., van Dijk, W. J., Fish, A., Johnson, E. S., Mann, M., Sixma, T. K., & Pichler, A. (2008). Ubc9 sumoylation regulates SUMO target discrimination. Molecular Cell, 31(3), 371–382.
Kuo. (2013). ERF1 interacts with COP1, SCE1 and At4g25210, and its degradation of ERF1 under dark affects proline circadian rhythm. Institute of Plant Biology
Lamsoul, I., Lodewick, J., Lebrun, S., Brasseur, R., Burny, A., Gaynor, R. B., & Bex, F. (2005). Exclusive ubiquitination and sumoylation on overlapping lysine residues mediate NF-kappaB activation by the human T-cell leukemia virus tax oncoprotein. Molecular and Cellular Biology, 25(23), 10391–10406.
Lau, O. S., & Deng, X. W. (2012). The photomorphogenic repressors COP1 and DET1: 20 years later. Trends in Plant Science, 17(10), 584–593.
Lee, J. H., & Kim, W. T. (2011). Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Molecules and Cells, 31(3), 201–208.
Lefèvre, I.S., Gratia, E., & Lutts, S. (2001). Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Science, 161, 943-952.
Lin, F., Jiang, Y., Li, J., Yan, T., Fan, L., Liang, J., Chen, Z. J., Xu, D., & Deng, X. W. (2018). B-BOX DOMAIN PROTEIN28 negatively regulates photomorphogenesis by repressing the activity of transcription factor HY5 and undergoes COP1-mediated degradation. The Plant Cell, 30(9), 2006–2019.
Lin, X. L., Niu, D., Hu, Z. L., Kim, D. H., Jin, Y. H., Cai, B., Liu, P., Miura, K., Yun, D. J., Kim, W. Y., Lin, R., & Jin, J. B. (2016). An Arabidopsis SUMO E3 ligase, SIZ1, negatively regulates photomorphogenesis by promoting COP1 activity. PLoS Genetics, 12(4), e1006016.
Liu, H., & Stone, S. L. (2010). Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. The Plant Cell, 22(8), 2630–2641.
Liu, S., Wang, X., Wang, H., Xin, H., Yang, X., Yan, J., Li, J., Tran, L. S., Shinozaki, K., Yamaguchi-Shinozaki, K., & Qin, F. (2013). Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genetics, 9(9), e1003790.
Lorenzo, O., Piqueras, R., Sánchez-Serrano, J. J., & Solano, R. (2003). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 15(1), 165–178.
Lu, X. D., Zhou, C. M., Xu, P. B., Luo, Q., Lian, H. L., & Yang, H. Q. (2015). Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. Molecular Plant, 8(3), 467–478.
Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2), 139–158.
Mao, J. L., Miao, Z. Q., Wang, Z., Yu, L. H., Cai, X. T., & Xiang, C. B. (2016). Arabidopsis ERF1 mediates cross-Talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genetics, 12(1), e1005760.
Marino, D., Peeters, N., & Rivas, S. (2012). Ubiquitination during plant immune signaling. Plant Physiology, 160(1), 15–27.
Miura, K., & Hasegawa, P.M. (2010). Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends in Cell Biology, 20(4), 223-32.
Miura, K., Jin, J. B., Lee, J., Yoo, C. Y., Stirm, V., Miura, T., Ashworth, E. N., Bressan, R. A., Yun, D. J., & Hasegawa, P. M. (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. The Plant Cell, 19(4), 1403–1414.
Miura, K., Lee, J., Jin, J. B., Yoo, C. Y., Miura, T., & Hasegawa, P. M. (2009). Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5418–5423.
Nakano, T., Suzuki, K., Fujimura, T., & Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 140(2), 411–432.
Nester E. W. (2015). Agrobacterium: nature's genetic engineer. Frontiers in Plant Science, 5, 730.
Nurdiani, D., Widyajayantie, D., & Nugroho, S. (2018). OsSCE1 Encoding SUMO E2-conjugating enzyme involves in drought stress response of Oryza sativa. Rice Science, 25, 73-81.
Ohme-Takagi, M., & Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell, 7(2), 173–182.
Okamuro, J. K., Caster, B., Villarroel, R., Van Montagu, M., & Jofuku, K. D. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 7076–7081.
Pacín, M., Legris, M., & Casal, J. J. (2014). Rapid decline in nuclear constitutive photomorphogenesis1 abundance anticipates the stabilization of its target elongated hypocotyl5 in the light. Plant Physiology, 164(3), 1134–1138.
Park, J. M., Park, C. J., Lee, S. B., Ham, B. K., Shin, R., & Paek, K. H. (2001). Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. The Plant Cell, 13(5), 1035–1046.
Pichler, A., Fatouros, C., Lee, H., & Eisenhardt, N. (2017). SUMO conjugation - a mechanistic view. Biomolecular Concepts, 8(1), 13–36.
Qiu, Q. S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J. K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 8436–8441.
Quintero, F. J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W. Y., Ali, Z., Fujii, H., Mendoza, I., Yun, D. J., Zhu, J. K., & Pardo, J. M. (2011). Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2611–2616.
Ramadan, A., Nemoto, K., Seki, M., Shinozaki, K., Takeda, H., Takahashi, H., & Sawasaki, T. (2015). Wheat germ-based protein libraries for the functional characterisation of the Arabidopsis E2 ubiquitin conjugating enzymes and the RING-type E3 ubiquitin ligase enzymes. BMC Plant Biology, 15, 275.
Rodrigues Oblessuc, P., Vaz Bisneta, M., & Melotto, M. (2019). Common and unique Arabidopsis proteins involved in stomatal susceptibility to Salmonella enterica and Pseudomonas syringae. FEMS Microbiology Letters, 366(16), fnz197.
Saijo, Y., Sullivan, J. A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Hoecker, U., & Deng, X. W. (2003). The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes & Development, 17(21), 2642–2647.
Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 290(3), 998–1009.
Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell, 18(5), 1292–1309.
Saracco, S. A., Miller, M. J., Kurepa, J., & Vierstra, R. D. (2007). Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiology, 145(1), 119–134.
Schwihla, M., & Korbei, B. (2020). The beginning of the end: Initial steps in the degradation of plasma membrane proteins. Frontiers in Plant Science, 11, 680.
Seeler, J. S., & Dejean, A. (2003). Nuclear and unclear functions of SUMO. Nature Reviews. Molecular Cell Biology, 4(9), 690–699.
Sheerin, D. J., Menon, C., zur Oven-Krockhaus, S., Enderle, B., Zhu, L., Johnen, P., Schleifenbaum, F., Stierhof, Y. D., Huq, E., & Hiltbrunner, A. (2015). Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. The Plant Cell, 27(1), 189–201.
Shi, H., & Zhu, J. K. (2002). Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Molecular Biology, 50(3), 543–550.
Shinozaki, K., & Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3(3), 217–223.
Skelly, M. J., Malik, S. I., Le Bihan, T., Bo, Y., Jiang, J., Spoel, S. H., & Loake, G. J. (2019). A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 116(34), 17090–17095.
Solano, R., Stepanova, A., Chao, Q., & Ecker, J. R. (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes & Development, 12(23), 3703–3714.
Song, Z., Bian, Y., Liu, J., Sun, Y., & Xu, D. (2020). B-box proteins: Pivotal players in light-mediated development in plants. Journal of Integrative Plant Biology, 62(9), 1293–1309.
Subramanian, C., Kim, B. H., Lyssenko, N. N., Xu, X., Johnson, C. H., & von Arnim, A. G. (2004). The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6798–6802.
Swamy, P. M., & Smith, B. N. (1999). Role of abscisic acid in plant stress tolerance. Current Science, 76(9), 1220–1227.
Tran, L. S., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 16(9), 2481–2498.
Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11632–11637.
Wan, L., Zhang, J., Zhang, H., Zhang, Z., Quan, R., Zhou, S., & Huang, R. (2011). Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PloS One, 6(9), e25216.
Wang. (2015). SCE1 and UBC18 interact with ERF1 and regulate its protein stability. Institute of Plant Biology
Wang, F., Liu, Y., Shi, Y., Han, D., Wu, Y., Ye, W., Yang, H., Li, G., Cui, F., Wan, S., Lai, J., & Yang, C. (2020). SUMOylation stabilizes the transcription factor DREB2A to improve plant thermotolerance. Plant Physiology, 183(1), 41–50.
Wolters, H., & Jürgens, G. (2009). Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Reviews. Genetics, 10(5), 305–317.
Xu, X., Paik, I., Zhu, L., & Huq, E. (2015). Illuminating progress in phytochrome-mediated light signaling pathways. Trends in Plant Science, 20(10), 641–650.
Yamaguchi-Shinozaki, K., & Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science, 10(2), 88–94.
Yates, G., Srivastava, A. K., & Sadanandom, A. (2016). SUMO proteases: uncovering the roles of deSUMOylation in plants. Journal of Experimental Botany, 67(9), 2541–2548.
Yau, R., & Rape, M. (2016). The increasing complexity of the ubiquitin code. Nature Cell Biology, 18(6), 579–586.
Zhao, Q., Xie, Y., Zheng, Y., Jiang, S., Liu, W., Mu, W., Liu, Z., Zhao, Y., Xue, Y., & Ren, J. (2014). GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Research, 42(Web Server issue), W325–W330.
Zheng, N., Schulman, B. A., Song, L., Miller, J. J., Jeffrey, P. D., Wang, P., Chu, C., Koepp, D. M., Elledge, S. J., Pagano, M., Conaway, R. C., Conaway, J. W., Harper, J. W., & Pavletich, N. P. (2002). Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature, 416(6882), 703–709.
Zhong, S., Shi, H., Xue, C., Wei, N., Guo, H., & Deng, X. W. (2014). Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. Proceedings of the National Academy of Sciences of the United States of America, 111(11), 3913–3920.
Zhu J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.
Zhu J. K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6(5), 441–445.
Zhu, L., Bu, Q., Xu, X., Paik, I., Huang, X., Hoecker, U., Deng, X. W., & Huq, E. (2015). CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nature Communications, 6, 7245.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86136-
dc.description.abstractETHYLENE RESPONSE FACTOR 1 (ERF1)是阿拉伯芥當中參與在生物性與非生物性逆境中,一個極為重要的轉錄因子,並且主要調控乙烯訊息傳遞路徑。先前已有研究指出ERF1蛋白在黑暗中會受到UBIQUITIN-CONJUGATING ENZYME 18 (UBC18)的泛素化調控,經過酵素的合作,會負責標記目標蛋白使其透過proteasome的途徑降解而趨於不穩定。在本研究中,我們發現SUMO-CONJUGATING ENZYME 1 (SCE1)與ERF1有交互作用。同時另一個在阿拉伯芥當中扮演E3 ubiquitin ligase的蛋白CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1),在黑暗下會藉由調控ERF1的ubiquitination而使其降解,反之在光照下SCE1會透過SUMOylation使ERF1蛋白趨於穩定。我們更進一步發現,當ERF1蛋白的SUMOylation位點被突變 (ERF14KR) 後,ubiquitination和SUMOylation的修飾都有減少的現象,並且在植物當中我們也觀察到在進入黑暗後ERF14KR沒有被降解,間接證實了對於ERF1,ubiquitination和SUMOylation存在著光照條件之間的競爭關係。不僅如此,我們也看到sce1突變株不管在鹽處理或是乾旱下,側根數量以及植株存活率都較WT來的低。同時我們也發現sce1突變株在黑暗處理下,ERF1的下游基因P5CS1以及OSM34的表現量都較WT更低,表示SCE1可以藉由調控ERF1的穩定性正向地參與在植物逆境反應中。綜上所述,我們的研究證實了一項新的調控ERF1蛋白穩定性的分子機制,以及SCE1在逆境訊息傳遞當中扮演的重要角色。zh_TW
dc.description.abstractETHYLENE RESPONSE FACTOR 1 (ERF1) is an important transcription factor which involves in biotic and abiotic stress, and plays a major role in ethylene signaling. Previous studies have shown that ERF1 is unstable in the dark and its degradation is mediated by UBIQUITIN-CONJUGATING ENZYME 18. Here, we demonstrated that SUMO-CONJUGATING ENZYME 1 (SCE1) can physically interact with ERF1 in plants. CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) is an E3 ubiquitin ligase that target substrate protein for proteosome degradation pathway. In vitro and in vivo ubiquitination and SUMOylation assays suggest that COP1 mediates ERF1 ubiquitination in the dark while SCE1 mediates ERF1 SUMOylation in the light. Moreover, in vitro ubiquitination assay showed that the SUMOylation sites-mutated ERF1 (ERF1-4KR) led to less ubiquitination compared to wild-type ERF1, suggesting that ubiquitination of ERF1 might compete with its SUMOylation on the same residues. Our drought- and salt-stress analyses also suggest that SCE1 plays a positive role in stress response. sce1 mutants showed less tolerant phenotype under both drought and high salinity. The induction of ERF1’s downstream genes such as P5CS1 and OSM34 are negatively regulated by SCE1 under light/dark cycle. Collectively, this study reveals the molecular mechanism regulating ERF1’s stability and light-stress signaling crosstalk.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:38:33Z (GMT). No. of bitstreams: 1
U0001-0609202213595200.pdf: 2259990 bytes, checksum: 44c34892c00a8bd84ab28e3d5da890f0 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsCONTENTS

致謝 i
CONTENTS iii
LIST OF FIGURES AND TABLES vi
中文摘要 vii
ABSTRACT viii
Chapter 1 Introduction 1
1.1 The abiotic stress signaling pathways in plants 1
1.2 AP2/ERF family transcription factors in Arabidopsis 3
1.3 The background of ERF1 5
1.4 Post-translational modification-ubiquitination 7
1.5 Post-translational modification-SUMOylation 9
1.6 Experimental strategy and goals 12
Chapter 2 Materials and Methods 13
2.1 Plant materials 13
2.1.1 Arabidopsis wild type (WT) 13
2.1.2 sce1 mutants 13
2.1.3 ERF1 overexpression transgenic lines 14
2.2 Plant growth conditions 14
2.3 Methods 15
2.3.1 In Vitro Co-immunoprecipitation Assays 15
2.3.2 Genomic DNA extraction from Arabidopsis 16
2.3.3 Relative gene expression 16
2.3.3.1 RNA isolation from Arabidopsis 16
2.3.3.2 cDNA synthesis 17
2.3.3.3 Real-time PCR 17
2.3.4 Protein extraction and western blot analysis 18
2.3.5 Bimolecular fluorescence complementation (BiFC) 19
2.3.5.1 Construction and preparation of plasmids 19
2.3.5.2 Protoplast isolation and plasmid transformation 19
2.3.6 In vitro SUMOylation and Ubiquitination 20
2.3.6.1 Protein purification 20
2.3.6.2 In vitro SUMOylation assay 21
2.3.6.3 In vitro ubiquitination assay 22
2.3.7 Salt stress tolerance test 22
Chapter 3 Results 23
3.1 ERF1 interacts with SCE1 in vitro 23
3.2 Screening of the T-DNA insertion mutants of SCE1 23
3.3 SCE1 facilitates ERF1 protein stabilization 24
3.4 SCE1 facilitates the SUMOylation of ERF1 in the light 24
3.5 ERF1 shows stronger interaction activity with SCE1 in the light 25
3.6 COP1 promotes ERF1 protein degradation 26
3.7 COP1 promotes the ubiquitination of ERF1 under darkness 26
3.8 SUMOylation site analysis and purification of SUMO-site mutated ERF1 27
3.9 K77, K177, K180 and K190 might be the SUMOylation sites of ERF1 27
3.10 Ubiquitination competes with SUMOylation on the same lysine residues of ERF1 28
3.11 ERF14KR is more stable than ERF1WT in the dark 29
3.12 sce1-4 and sce1-7 mutants are more sensitive to salt stress compared to WT 30
3.13 SCE1 mediates the ERF1 downstream gene expression 30
3.14 Protein level of SCE1 is regulated under light/dark cycle and ACC treatment 31
Chapter 4 Discussion 32
4.1 SCE1 interacts with ERF1 in the light but not in the dark 32
4.2 SCE1 and COP1 mediate ERF1 stability under light/dark cycle 33
4.3 SCE1 is involved in stress response through ERF1 35
4.4 SUMOylation and Ubiquitination might compete the same lysine site 35
4.5 Conclusion 36
REFERENCES 38
FIGRURES AND TABLES 51
APPENDIX 69
論文口試問答集與討論建議 75

LIST OF FIGURES AND TABLES

Figure 1. In vitro Co-IP assay of ERF1 and SCE1. 51
Figure 2. Co-IP assay of ERF1 and SCE1. 52
Figure 3. Identification of sce1-4 and sce1-7 T-DNA insertion mutants. 53
Figure 4. ERF1 protein level is regulated by SCE1 under light and dark condition. 54
Figure 5. SUMOylation of ERF1 is mediated by SCE1. 55
Figure 6. BiFC assay of SCE1 and ERF1 under light-to-dark condition. 56
Figure 7. ERF1 protein level is regulated by COP1 in the dark. 57
Figure 8. Ubiquitination of ERF1 is mediated by COP1. 58
Figure 9. Prediction of SUMOylation sites in ERF1. 59
Figure 10. SCE1 promotes SUMOylation of ERF1 in vitro. 60
Figure 11. COP1 promotes ubiquitination of ERF1 in vitro. 61
Figure 12. ERF14KR maintains the ERF1 protein level. 62
Figure 13. Phenotypic analysis of sce1-4 and sce1-7 mutants in response to salt stress. 63
Figure 14. Gene expression of P5CS1 and OSM34 in the dark. 64
Figure 15. SCE1 is mediated by light and ACC treatment. 65
Figure 16. A proposed model showing SCE1- and COP1-mediated regulation of ERF1 in light and stress response. 66
Table 1. List of primers for qPCR 67
Table 2. List of primers for other usages 68
-
dc.language.isozh_TW-
dc.title阿拉伯芥中的SCE1和COP1會透過泛素化與類小泛素化調節轉錄因子ERF1在光照與黑暗下的蛋白質穩定性zh_TW
dc.titleSCE1 and COP1 regulate the stability of ERF1 through SUMOylation and ubiquitination under light-dark cycle in Arabidopsisen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊健志;洪傳揚;許富鈞;常怡雍zh_TW
dc.contributor.oralexamcommitteeChien-Chih Yang;Chwan-Yang Hong;Fu-Chiun Hsu;Yee-yung Charngen
dc.subject.keyword阿拉伯芥,ERF1,SCE1,COP1,泛素化,類小泛素化,蛋白質穩定性,鹽逆境,zh_TW
dc.subject.keywordArabidopsis,ERF1,SCE1,COP1,ubiquitination,SUMOylation,protein stability,salt stress,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202203192-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-07-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2023-08-10-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf2.21 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved