Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86124
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊姍樺(Shan-Hua Yang)
dc.contributor.authorShu-Cheng Zhangen
dc.contributor.author張煦誠zh_TW
dc.date.accessioned2023-03-19T23:37:58Z-
dc.date.copyright2022-09-23
dc.date.issued2022
dc.date.submitted2022-09-06
dc.identifier.citation高家敏 (2021)。緩慢升溫結合大幅度日間溫度變化對萼形柱珊瑚之生理及共棲 菌菌群之影響。台灣大學漁業科學所碩士論文。 張台奇 (2019)。培育系統、光強度和流速對藍綠肉質軟珊瑚生理表現的影響。 東華大學海洋生物多樣性及演化學系碩士論文。 葉宗旻 (2019)。以藍光和餵食優化兩種軸孔珊瑚的生長與色彩。東華大學 海洋生物多樣性及演化學系碩士論文。 戴昌風、鄭有容 (2020)。台灣珊瑚全圖鑑(上):石珊瑚,貓頭鷹出版社。 Al-Moghrabi, S., Allemand, D., Couret, J., & Jaubert, J. (1995). Fatty acids of the scleractinian coral Galaxea fascicularis: effect of light and feeding. Journal of Comparative Physiology B, 165(3), 183-192. Al-Sofyani, A. A., & Floos, Y. A. (2013). Effect of temperature on two reef-building corals Pocillopora damicornis and P. verrucosa in the Red Sea. Oceanologia, 55(4), 917-935. Albert, J. A., Olds, A. D., Albert, S., Cruz-Trinidad, A., & Schwarz, A.-M. (2015). Reaping the reef: provisioning services from coral reefs in Solomon Islands. Marine Policy, 62, 244-251. Ayalon, I., de Barros Marangoni, L. F., Benichou, J. I., Avisar, D., & Levy, O. (2019). Red Sea corals under Artificial Light Pollution at Night (ALAN) undergo oxidative stress and photosynthetic impairment. Global change biology, 25(12), 4194-4207. Bahr, K. D., Severino, S. J., Tsang, A. O., Han, J. J., Richards Dona, A., Stender, Y. O., Weible, R. M., Graham, A., McGowan, A. E., & Rodgers, K. S. (2020). The Hawaiian Koʻa Card: coral health and bleaching assessment color reference card for Hawaiian corals. SN Applied Sciences, 2(10), 1-15. Barton, J. A., Willis, B. L., & Hutson, K. S. (2017). Coral propagation: a review of techniques for ornamental trade and reef restoration. Reviews in Aquaculture, 9(3), 238-256. Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429(6994), 827-833. Ben-Nissan, B. (2015). Discovery and development of marine biomaterials. In Functional marine biomaterials (pp. 3-32). Elsevier. Bollati, E., D’Angelo, C., Alderdice, R., Pratchett, M., Ziegler, M., & Wiedenmann, J. (2020). Optical feedback loop involving dinoflagellate symbiont and scleractinian host drives colorful coral bleaching. Current Biology, 30(13), 2433-2445. e2433. Bramanti, L., Iannelli, M., Fan, T. Y., & Edmunds, P. J. (2015). Using demographic models to project the effects of climate change on scleractinian corals: Pocillopora damicornis as a case study. Coral Reefs, 34(2), 505-515. Brown, B., & Bythell, J. (2005). Perspectives on mucus secretion in reef corals. Marine Ecology Progress Series, 296, 291-309. Bruce, D., & Vasil’ev, S. (2004). Excess light stress: multiple dissipative processes of excess excitation. In Chlorophyll a Fluorescence (pp. 497-523). Springer. Bythell, J. C. (1988). A total nitrogen and carbon budget for the elkhorn coral Acropora palmata (Lamarck). in Proc. 6th International Coral Reef Symposium, 535–540 Carpenter, K. E., & Niem, V. H. (1998). The living marine resources of the western Central Pacific: 1. Seaweeds, corals, bivalves and gastropods. F.A.O., 19,359-363. Chao, C. H., Wen, Z. H., Wu, Y. C., Yeh, H. C., & Sheu, J. H. (2008). Cytotoxic and anti-inflammatory cembranoids from the soft coral Lobophytum crassum. Journal of natural products, 71(11), 1819-1824. Cohen, I., & Dubinsky, Z. (2015). Long term photoacclimation responses of the coral Stylophora pistillata to reciprocal deep to shallow transplantation: photosynthesis and calcification. Frontiers in Marine Science, 2, 45. Cohen, I., Dubinsky, Z., & Erez, J. (2016). Light enhanced calcification in hermatypic corals: new insights from light spectral responses. Frontiers in Marine Science, 2, 122. Conlan, J., Humphrey, C., Severati, A., Parrish, C., & Francis, D. (2019). Elucidating an optimal diet for captive Acropora corals. Aquaculture, 513, 734420. Conlan, J. A., Bay, L. K., Severati, A., Humphrey, C., & Francis, D. S. (2018). Comparing the capacity of five different dietary treatments to optimise growth and nutritional composition in two scleractinian corals. PloS one, 13(11), e0207956. Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a nonequilibrium state. Science, 199(4335), 1302-1310. Craggs, J., Guest, J. R., Davis, M., Simmons, J., Dashti, E., & Sweet, M. (2017). Inducing broadcast coral spawning ex situ: Closed system mesocosm design and husbandry protocol. Ecology and evolution, 7(24), 11066-11078. Cunning, R., Gillette, P., Capo, T., Galvez, K., & Baker, A. (2015). Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs, 34(1), 155-160. D’Angelo, C., Denzel, A., Vogt, A., Matz, M. V., Oswald, F., Salih, A., Nienhaus, G. U., & Wiedenmann, J. (2008). Blue light regulation of host pigment in reef-building corals. Marine Ecology Progress Series, 364, 97-106. Davies, P. S. (1984). The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs, 2(4), 181-186. Davies, P. S. (1991). Effect of daylight variations on the energy budgets of shallow-water corals. Marine Biology, 108(1), 137-144. Dobson, K. L., Ferrier-Pagès, C., Saup, C. M., & Grottoli, A. G. (2021). The effects of temperature, light, and feeding on the physiology of Pocillopora damicornis, Stylophora pistillata, and Turbinaria reniformis corals. Water, 13(15), 2048. Dubinsky, Z., Falkowski, P., Porter, J., & Muscatine, L. (1984). Absorption and utilization of radiant energy by light-and shade-adapted colonies of the hermatypic coral Stylophora pistillata. Proceedings of the Royal Society of London. Series B. Biological Sciences, 222(1227), 203-214. Dubinsky, Z., Stambler, N., Ben-Zion, M., McCloskey, L., Muscatine, L., & Falkowski, P. (1990). The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proceedings of the Royal Society of London. B. Biological Sciences, 239(1295), 231-246. Dustan, P. (1982). Depth-dependent photoadaption by zooxanthellae of the reef coral Montastrea annularis. Marine Biology, 68(3), 253-264. Edmunds, P., Gates, R., & Gleason, D. (2003). The tissue composition of Montastraea franksi during a natural bleaching event in the Florida Keys. Coral Reefs, 22(1), 54-62. Edmunds, P. J., & Carpenter, R. C. (2001). Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proceedings of the National Academy of Sciences, 98(9), 5067-5071. Ellis, S. (2000). Nursery and grow-out techniques for giant clams (Bivalvia: Tridacnidae). Center for Tropical and Subtropical Aquaculture Waimanalo, Hawaii,, USA. Fabina, N. S., Putnam, H. M., Franklin, E. C., Stat, M., & Gates, R. D. (2012). Transmission mode predicts specificity and interaction patterns in coral-Symbiodinium networks. PloS one, 7(9), e44970. Fabricius, K. E., Benayahu, Y., & Genin, A. (1995). Herbivory in asymbiotic soft corals. Science, 268(5207), 90-92. Falkowski, P. G., Dubinsky, Z., Muscatine, L., & Porter, J. W. (1984b). Light and the bioenergetics of a symbiotic coral. Bioscience, 34(11), 705-709. Falkowski, P. G., & Dubinsky, Z. (1981). Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature, 289(5794), 172-174. Ferrier-Pagès, C., Rottier, C., Beraud, E., & Levy, O. (2010). Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: Effect on the rates of photosynthesis. Journal of Experimental Marine Biology and Ecology, 390(2), 118-124. Ferrier-Pagès, C., Schoelzke, V., Jaubert, J., Muscatine, L., & Hoegh-Guldberg, O. (2001). Response of a scleractinian coral, Stylophora pistillata, to iron and nitrate enrichment. Journal of Experimental Marine Biology and Ecology, 259(2), 249-261. Ferrier-Pagès, C., Witting, J., Tambutté, E., & Sebens, K. (2003). Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs, 22(3), 229-240. Ferrier, M. D. (1991). Net uptake of dissolved free amino acids by four scleractinian corals. Coral Reefs, 10(4), 183-187. Fischbach, M. A., & Walsh, C. T. (2009). Antibiotics for emerging pathogens. Science, 325(5944), 1089-1093. Gomaa, M. N., Soliman, K., Ayesh, A., Abd El-Wahed, A., Hamza, Z., Mansour, H. M., Khalifa, S. A., Mohd Ali, H. B., & El-Seedi, H. R. (2016). Antibacterial effect of the red sea soft coral Sarcophyton trocheliophorum. Natural product research, 30(6), 729-734. Gorbunov, M. Y., & Falkowski, P. G. (2002). Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnology and Oceanography, 47(1), 309-315. Grafeld, S., Oleson, K. L., Teneva, L., & Kittinger, J. N. (2017). Follow that fish: Uncovering the hidden blue economy in coral reef fisheries. PloS one, 12(8), e0182104. Green, D. W., Ben-Nissan, B., Yoon, K. S., Milthorpe, B., & Jung, H. S. (2017). Natural and synthetic coral biomineralization for human bone revitalization. Trends in Biotechnology, 35(1), 43-54. Grover, R., Maguer, J. F., Allemand, D., & Ferrier-Pagès, C. (2006). Urea uptake by the scleractinian coral Stylophora pistillata. Journal of Experimental Marine Biology and Ecology, 332(2), 216-225. Hatcher, B. G. (1988). Coral reef primary productivity: a beggar's banquet. Trends in Ecology & Evolution, 3(5), 106-111. Heidelberg, K. B., Sebens, K. P., & Purcell, J. (2004). Composition and sources of near reef zooplankton on a Jamaican forereef along with implications for coral feeding. Coral Reefs, 23(2), 263-276. Hii, Y.-S., Soo, C.-L., & Liew, H. C. (2009). Feeding of scleractinian coral, Galaxea fascicularis, on Artemia salina nauplii in captivity. Aquaculture International, 17(4), 363-376. Hirayama, K., Takayama, K., Haruta, S., Ishibashi, H., & Takeuchi, I. (2017). Effect of low concentrations of Irgarol 1051 on RGB (R, red; G, green; B, blue) colour values of the hard-coral Acropora tenuis. Marine Pollution Bulletin, 124(2), 678-686. Hongsheng, Y., Jian, W., Yi, Z., Tao, Z., Ping, W., Yichao, H., & Fusui, Z. (2000). Comparasion of effeciencies of different culture systems in the shallow sea along Yantai. Journal of Fisheries of China. Houlbrèque, F., Tambutté, E., & Ferrier-Pagès, C. (2003). Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. Journal of Experimental Marine Biology and Ecology, 296(2), 145-166. Huang, Y. L., Mayfield, A. B., & Fan, T. Y. (2020). Effects of feeding on the physiological performance of the stony coral Pocillopora acuta. Scientific Reports, 10(1), 1-12. Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., Heron, S. F., Hoey, A. S., Hoogenboom, M. O., & Liu, G. (2018). Global warming transforms coral reef assemblages. Nature, 556(7702), 492-496. Imhoff, J. F., Labes, A., & Wiese, J. (2011). Bio-mining the microbial treasures of the ocean: new natural products. Biotechnology advances, 29(5), 468-482. IUCN. (2014). The IUCN red list of threatened species. Version 2014.1. IUCN, 12, 20. Jordaan, G., & Umenne, P. (2021). Marine Aquarium Temperature Controller and the IoT (Internet of Things). 2021 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Khalesi, M. K., Beeftink, H. H., & Wijffels, R. H. (2009). Light-dependency of growth and secondary metabolite production in the captive zooxanthellate soft coral Sinularia flexibilis. Marine biotechnology, 11(4), 488-494. Kramarsky-Winter, E., Sweet, M. J., Leal, M. C., Sheridan, C., & Kushmaro, A. (2013). Diseases in coral aquaculture: causes, implications and preventions. Kuanui, P., Chavanich, S., Viyakarn, V., Omori, M., Fujita, T., & Lin, C. (2020). Effect of light intensity on survival and photosynthetic efficiency of cultured corals of different ages. Estuarine, Coastal and Shelf Science, 235, 106515. Léger, P., Bengtson, D. A., Sorgeloos, P., Simpson, K. L., & Beck, A. D. (1987). The nutritional value of Artemia: a review. Artemia research and its applications, 3, 357-372. Leal, M. C., Calado, R., Sheridan, C., Alimonti, A., & Osinga, R. (2013). Coral aquaculture to support drug discovery. Trends in Biotechnology, 31(10), 555-561. Levy, O., Appelbaum, L., Leggat, W., Gothlif, Y., Hayward, D. C., Miller, D. J., & Hoegh-Guldberg, O. (2007). Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science, 318(5849), 467-470. Levy, O., Karako-Lampert, S., Ben-Asher, H. W., Zoccola, D., Pagès, G., & Ferrier-Pagès, C. (2016). Molecular assessment of the effect of light and heterotrophy in the scleractinian coral Stylophora pistillata. Proceedings of the Royal Society B: Biological Sciences, 283(1829), 20153025. Lewis, J., & Price, W. (1975). Feeding mechanisms and feeding strategies of Atlantic reef corals. Journal of Zoology, 176(4), 527-544. Lopez, G. R., & Levinton, J. S. (1987). Ecology of deposit-feeding animals in marine sediments. The quarterly review of biology, 62(3), 235-260. Maguire, B., Gleason, D., Mojica, R., & Mojica, E. (2003). Changes in photographic R, G, and B numerical values quantitatively reflect pigment and zooxanthella decrease during Porites astreoides bleaching. In Proceedings of the 9th International Coral Reef Symposium Bali, 1129-1137. Mass, T., Kline, D., Roopin, M., Veal, C., Cohen, S., Iluz, D., & Levy, O. (2010). The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. Journal of Experimental Biology, 213(23), 4084-4091. Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of experimental botany, 51(345), 659-668. Mayfield, A. B., Chen, C. S., & Dempsey, A. C. (2017). Biomarker profiling in reef corals of Tonga’s Ha’apai and Vava’u archipelagos. PloS one, 12(11), e0185857. McAllister, D. E. (1991). What is the status of the world's coral reef fishes? Sea Wind, 5, 14-18. Meireles, J. P. G. (2017). Aquaculture of corals: the effects of temperature and modifications in photoperiod in performance and growth of Stylophora pistillata. PhD Thesis. Muscatine, L., & Porter, J. W. (1977). Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience, 27(7), 454-460. Nakamura, T., Iguchi, A., Suzuki, A., Sakai, K., & Nojiri, Y. (2017). Effects of acidified seawater on calcification, photosynthetic efficiencies and the recovery processes from strong light exposure in the coral Stylophora pistillata. Marine Ecology, 38(3), e12444. Naredla, M., Osmani, R. A., Meenakshi, S., Gupta, M. S., & Gowda, D. V. (2022). Potential applications of coral sand in bone healing and drug delivery. Journal of Drug Delivery Science and Technology, 103150. Odum, H. T., & Odum, E. P. (1955). Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecological monographs, 25(3), 291-320. Osinga, R., Schutter, M., Griffioen, B., Wijffels, R. H., Verreth, J. A., Shafir, S., Henard, S., Taruffi, M., Gili, C., & Lavorano, S. (2011). The biology and economics of coral growth. Marine biotechnology, 13(4), 658-671. Oswald, F., Schmitt, F., Leutenegger, A., Ivanchenko, S., D'Angelo, C., Salih, A., Maslakova, S., Bulina, M., Schirmbeck, R., & Nienhaus, G. (2007). Contributions of host and symbiont pigments to the coloration of reef corals. The FEBS journal, 274(4), 1102-1122. Palardy, J. E., Grottoli, A. G., & Matthews, K. A. (2005). Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Marine Ecology Progress Series, 300, 79-89. Palardy, J. E., Grottoli, A. G., & Matthews, K. A. (2006). Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. Journal of Experimental Marine Biology and Ecology, 331(1), 99-107. Petersen, D., Wietheger, A., & Laterveer, M. (2008). Influence of different food sources on the initial development of sexual recruits of reefbuilding corals in aquaculture. Aquaculture, 277(3-4), 174-178. Rahav, O., Dubinsky, Z., Achituv, Y., & Falkowski, P. (1989). Ammonium metabolism in the zooxanthellate coral, Stylophora pistillata. Proceedings of the Royal Society of London. B. Biological Sciences, 236(1284), 325-337. Rinkevich, B. (2005). Conservation of coral reefs through active restoration measures: recent approaches and last decade progress. Environmental Science & Technology, 39(12), 4333-4342. Rocha, R. J., Bontas, B., Cartaxana, P., Leal, M. C., Ferreira, J. M., Rosa, R., Serôdio, J., & Calado, R. (2015). Development of a standardized modular system for experimental coral culture. Journal of the World Aquaculture Society, 46(3), 235-251. Rocha, R. J., Pimentel, T., Serôdio, J., Rosa, R., & Calado, R. (2013). Comparative performance of light emitting plasma (LEP) and light emitting diode (LED) in ex situ aquaculture of scleractinian corals. Aquaculture, 402, 38-45. Rublee, P. A., Lasker, H. R., Gottfried, M., & Roman, M. R. (1980). Production and bacterial colonization of mucus from the soft coral Briarium asbestinum. Bulletin of Marine Science, 30(4), 888-893. Sangmanee, K., Casareto, B. E., Nguyen, T. D., Sangsawang, L., Toyoda, K., Suzuki, T., & Suzuki, Y. (2020). Influence of thermal stress and bleaching on heterotrophic feeding of two scleractinian corals on pico-nanoplankton. Marine Pollution Bulletin, 158, 111405. Schlager, W. (2003). Benthic carbonate factories of the Phanerozoic. International Journal of Earth Sciences, 92(4), 445-464. Schmidt-Roach, S., Miller, K. J., Lundgren, P., & Andreakis, N. (2014). With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia: Pocilloporidae) using morphology and genetics. Zoological Journal of the Linnean Society, 170(1), 1-33. Schubert, P., & Wilke, T. (2018). Coral microcosms: Challenges and opportunities for global change biology. Corals in a changing world, 143-175. Schuhmacher, H. (1977). Ability of fungiid corals to overcome sedimentation. In Proc 3rd Int Coral Reef Symp, 1, 503-509. Sebens, K., Vandersall, K., Savina, L., & Graham, K. (1996). Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Marine Biology, 127(2), 303-317. Sinutok, S., Chotikarn, P., Saengsakda Pattaratumrong, M., Moungkeaw, P., Pramneechote, P., & Yucharoen, M. (2022). Synergistic effect of elevated temperature and light stresses on physiology of Pocillopora acuta from different environments. Journal of Marine Science and Engineering, 10(6), 790. Sorgeloos, P., Coutteau, P., Dhert, P., Merchie, G., & Lavens, P. (1998). Use of brine shrimp, Artemia spp., in larval crustacean nutrition: a review. Reviews in fisheries science, 6(1-2), 55-68. Sorokin, Y. I. (1973). Role of microflora in metabolism and productivity of Hawaiian Reefs. Oceanology ussr, 13(2), 262-267. Spalding, M. D., & Grenfell, A. M. (1997). New estimates of global and regional coral reef areas. Coral Reefs, 16(4), 225-230. Strader, M. E., Davies, S. W., & Matz, M. V. (2015). Differential responses of coral larvae to the colour of ambient light guide them to suitable settlement microhabitat. Royal Society open science, 2(10), 150358. Szabó, M., Wangpraseurt, D., Tamburic, B., Larkum, A. W., Schreiber, U., Suggett, D. J., Kühl, M., & Ralph, P. J. (2014). Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis. Plant Physiology and Biochemistry, 83, 159-167. Tagliafico, Rangel, S., Kelaher, B., Scheffers, S., & C, L. (2018). A new technique to increase polyp production in stony coral aquaculture using waste fragments without polyps. Aquaculture, 484, 303-308. Tagliafico , A., Aejandro, S., Salomé, S., Brendan, S., & Leslie, S. (2018). Optimizing heterotrophic feeding rates of three commercially important scleractinian corals. Aquaculture, 483, 96-101. Tagliafico, A., Rudd, D., Rangel, M., Kelaher, B. P., Christidis, L., Cowden, K., Scheffers, S. R., & Benkendorff, K. (2017). Lipid-enriched diets reduce the impacts of thermal stress in corals. Marine Ecology Progress Series, 573, 129-141. Tissot, B. N., Best, B. A., Borneman, E. H., Bruckner, A. W., Cooper, C. H., D’Agnes, H., Fitzgerald, T. P., Leland, A., Lieberman, S., & Amos, A. M. (2010). How US ocean policy and market power can reform the coral reef wildlife trade. Marine Policy, 34(6), 1385-1388. Titlyanov, E., Bil, K., Fomina, I., Titlyanova, T., Leletkin, V., Eden, N., Malkin, A., & Dubinsky, Z. (2000). Effects of dissolved ammonium addition and host feeding with Artemia salina on photoacclimation of the hermatypic coral Stylophora pistillata. Marine Biology, 137(3), 463-472. Titlyanov, E., & Titlyanova, T. (2002). Reef-building corals—symbiotic autotrophic organisms: 2. Pathways and mechanisms of adaptation to light. Russian Journal of Marine Biology, 28(1), S16-S31. Titlyanov, E., Titlyanova, T., Yamazato, K., & van Woesik, R. (2001). Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. Journal of Experimental Marine Biology and Ecology, 263(2), 211-225. Todd, P. A. (2008). Morphological plasticity in scleractinian corals. Biological reviews, 83(3), 315-337. Toh, K. B., Ng, C. S. L., Wu, B., Toh, T. C., Cheo, P. R., Tun, K., & Chou, L. M. (2017). Spatial variability of epibiotic assemblages on marina pontoons in Singapore. Urban Ecosystems, 20(1), 183-197. Toh, T. C., Ng, C. S. L., Peh, J. W. K., Toh, K. B., & Chou, L. M. (2014). Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement. PloS one, 9(6), e98529. Toonen, R. J., & Wee, C. B. (2005). An experimental comparison of sediment-based biological filtration designs for recirculating aquarium systems. Aquaculture, 250(1-2), 244-255. Ulstrup, K., Ralph, P., Larkum, A., & Kühl, M. (2006). Intra-colonial variability in light acclimation of zooxanthellae in coral tissues of Pocillopora damicornis. Marine Biology, 149(6), 1325-1335. Wijgerde, T., Spijkers, P., Karruppannan, E., Verreth, J. A., & Osinga, R. (2012). Water flow affects zooplankton feeding by the scleractinian coral Galaxea fascicularis on a polyp and colony level. Journal of Marine Biology, 2012, 1-7 Winters, G., Beer, S., Zvi, B. B., Brickner, I., & Loya, Y. (2009). Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade. Marine Ecology Progress Series, 384, 107-119. Winters, G., Loya, Y., Röttgers, R., & Beer, S. (2003). Photoinhibition in shallow‐water colonies of the coral Stylophora pistillata as measured in situ. Limnology and Oceanography, 48(4), 1388-1393. Wolff, N. H., Mumby, P. J., Devlin, M., & Anthony, K. R. (2018). Vulnerability of the Great Barrier Reef to climate change and local pressures. Global change biology, 24(5), 1978-1991. Yuen, Y. S., Yamazaki, S. S., Nakamura, T., Tokuda, G., & Yamasaki, H. (2009). Effects of live rock on the reef-building coral Acropora digitifera cultured with high levels of nitrogenous compounds. Aquacultural engineering, 41(1), 35-43. Zheng, X., Wang, C., Sheng, H., Niu, G., Dong, X., Yuan, L., & Shi, T. (2021). Effects of Ocean Acidification on Carbon and Nitrogen Fixation in the Hermatypic Coral Galaxea fascicularis. Frontiers in Marine Science, 8, 421. Ziegler, M., Roder, C. M., Büchel, C., & Voolstra, C. R. (2014). Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea. Coral Reefs, 33(4), 1115-1129.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86124-
dc.description.abstract以藍光飼養珊瑚能提升珊瑚鈣化率及刺激色素產生,然而卻會抑制共生藻的光合作用;餵食能使珊瑚成長更為快速、更具環境變化抵抗力,本實驗將兩者結合,探討藍光及餵食是否能使珊瑚具高生長率同時改變珊瑚色彩表現。本研究包括兩次實驗,實驗A使用萼形柱珊瑚(Stylophora pistillata, 縮寫成SP和細枝鹿角珊瑚(Pocillopora damicornis, 縮寫成PD)進行實驗,以LED燈提供藍光(強光:420;弱光: 250 μmol quanta m-2 s-1),並且每周移至餵食缸餵食不同濃度(高餵:10 g;低餵:5 g)經滋養之豐年蝦2次;實驗B 則是用萼形柱珊瑚和銳枝鹿角珊瑚(Pocillopora acuta, 縮寫成PA),並一樣在不同強度藍光養殖(強光:350;弱光: 80 μmol quanta m-2 s-1)和高低濃度豐年蝦餵食。兩次實驗皆飼養75天,存活率皆100%,且最大光亮子產率(Fv/Fm)都維持在0.6以上,兩次實驗SP的特定生長率都大於PA和PD;SP在實驗A特定生長率最高的組別為高餵高光組,實驗B則為低餵高光組,鹿角珊瑚生長率在實驗A並無顯著差異,而在實驗B則也是低餵高光組最高;兩次實驗色彩分析結果都顯示高光組具有較高的紅綠藍值(Red-Green-Blue value),且藍光強弱跟餵食濃度都會顯著影響RGB值,尤其是強藍光,這些結果未來可應用在觀賞與復育用珊瑚的養殖與生產。zh_TW
dc.description.abstractCulturing corals with blue light can increase the calcification rate of corals and stimulate the production of pigments, but it will inhibit the photosynthesis of symbiotic algae. Feeding can make corals grow faster and be more resistant to environmental changes. This study combines two experiments to explore whether blue light and feeding can increase coral growth rate and change coral color. Experiment A cultured Stylophora pistillata (SP) and Pocillopora damicornis (PD) under blue light (high intensity: 420; low intensity: 250 μmol quanta m-2 s-1) with LED lights, and fed with different concentrations (high: 10 g; low: 5 g) of enriched brine shrimp twice a week in the feeding tank. Experiment B cultured SP and Pocillopora acuta (PA) under different intensities of blue light (high light: 350; low light: 80 μmol quanta m-2 s-1) and different concentrations of brine shrimp. In both experiments, corals were reared for 75 days, the survival rate was 100%, and the maximum photon yield (Fv/Fm) was maintained > 0.6. The specific growth rate of SP in both experiments was greater than that of PA and PD; The highest specific growth rate in SP was high-fed and high-light group, and was low-fed and high-light group in experiment B. There was no significant difference in the growth rate of PD in experiment A, while in experiment B, PA had the highest growth rate in low-fed and high-light group. The color analysis results of both experiments were the same. It shows that the high-light group has a higher red-green-blue value, and the blue light intensity and feeding concentration significantly affected the RGB value, especially the high blue light intensity. These results can be applied to breed and produce corals for the ornamental aquarium and restoration in the future.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:37:58Z (GMT). No. of bitstreams: 1
U0001-3108202214151200.pdf: 4495713 bytes, checksum: ee6784db9e3deae6262722501634b2b0 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents壹、 緒論……………………………………………………………………………....1 (一) 珊瑚的價值……………………………………………..………………….1 (二) 異地珊瑚養殖……………………………………………………………...1 (三) 藍光對珊瑚的影響………………………………………………………...3 (四) 異營對珊瑚的影響………………………………………………………...4 (五) 珊瑚的色彩分析…………………………………………………………...5 (五) 鹿角珊瑚…………………………………………………………………...5 (六) 研究目的…………………………………………………………………...6 貳、材料與方法………………………………………………………………………8 (一) 材料………………………………………………………………………...8 1.1 實驗物種及採樣地點……………………………………………….8 1.2 分支製作…………………………………………………………….8 (二) 人工養殖系統及日常維護………………………………………………...9 2.1 養殖系統及維護……………………………………………………...9 2.2 缸中生物組成………………………………………………………...9 (三) 處理……………………………………………………………………….10 3.1 光照強度處理……………………………………………………….10 3.2 餵食………………………………………………………………….11 (四) 最大光亮子產率………………………………………………………….12 (五) 重量測量………………………………………………………………….12 (六) 線性成長………………………………………………………………….13 (七) 色彩測量………………………………………………………………….13 (八) 色彩分數………………………………………………………………….14 (九) 統計分析………………………………………………………………….14 參、結果……………………………………………………………………………..15 (一) 養殖環境參數………………………………….…………………………15 (二) 存活率…………………………………………………………………….15 (三) 實驗A…………………………………………………………………….15 1. 最大光亮子產率…………………………………………………...…15 2. 分支重量……………………………………………………………...16 3. 線性成長……………………………………………………………...17 4. 分支色彩……………………………………………………………...17 5. 色彩分數……………………………………………………………...20 (四) 實驗B………………………………………………………………………..…21 1. 最大光亮子產率……………………………………………………...21 2. 分支重量………………………………………………………….......22 3. 分支色彩……………………………………………………………...23 肆、討論……………………………………………………………………………..27 (一) 飼養環境對珊瑚的影響………………………………………………….27 (二) 萼形柱珊瑚……………………………………………………………….28 1. 分支最大光亮子產率及色彩分數…………………………………...28 2. 生長…………………………………………………………………...29 3. 色彩分析……………………………………………………………...30 (三) 鹿角珊瑚………………………………………………………………….31 1. 分支最大光亮子產率及色彩分數…………………………………...31 2. 生長…………………………………………………………………...32 3. 色彩分析……………………………………………………………...33 伍、結論……………………………………………………………………………..34 陸、未來值得研究的課題…………………………………………………………..35 柒、參考文獻………………………………………………………………………..36 捌、表與圖…………………………………………………………………………..47
dc.language.isozh-TW
dc.title藍光及餵食對萼形柱珊瑚及鹿角珊瑚生理表現之影響zh_TW
dc.titleEffects of blue light and feeding on the physiological performance of reef corals, Stylophora pistillata and Pocilloporaen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor樊同雲(Tung-Yung Fan)
dc.contributor.oralexamcommittee識名信也(Shikina Shinya)
dc.subject.keyword造礁珊瑚,藍光強度,餵食,色彩,異地水產養殖,zh_TW
dc.subject.keywordreef coral,blue light intensity,feeding,color,ex situ aquaculture,en
dc.relation.page98
dc.identifier.doi10.6342/NTU202203018
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-07
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
dc.date.embargo-lift2022-09-23-
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
U0001-3108202214151200.pdf4.39 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved