請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86123完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉俊麟(Chun-Lin Liu) | |
| dc.contributor.author | Chung-Han Chen | en |
| dc.contributor.author | 陳崇瀚 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:37:55Z | - |
| dc.date.copyright | 2022-10-12 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-07 | |
| dc.identifier.citation | J. Li and P. Stoica, MIMO radar signal processing. John Wiley & Sons, 2008. J. R. Guerci, Space-time adaptive processing for radar. Artech House, 2014. H. L. VanTrees, Optimum array processing: Part IV of detection, estimation, and modulation theory. John Wiley & Sons, 2004. J. Benesty, J. Chen, and Y. Huang, Microphone array signal processing, vol. 1. Springer Science & Business Media, 2008. P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 573–586, 2010. P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4167–4181, 2010. M. Wang and A. Nehorai, “Coarrays, MUSIC, and the Cramér–Rao bound,” IEEE Transactions on Signal Processing, vol. 65, no. 4, pp. 933–946, 2016. C. Zhou and J. Zhou, “Direction-of-arrival estimation with coarray ESPRIT for coprime array,” Sensors, vol. 17, no. 8, p. 1779, 2017. P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” in 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pp. 289–294, 2011. C. L. Liu and P. P. Vaidyanathan, “Remarks on the spatial smoothing step in coarray MUSIC,” IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1438–1442, 2015. P. O’Connor and A. Kleyner, Practical reliability engineering. John Wiley & Sons, 2012. A. Myers, Complex system reliability. Springer, 2010. H. Taylor and S. W. Golomb, “Rulers part I,” Univ. Southern Calif., Los Angeles, Tech. Rep, pp. 85–05, 1985. A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on antennas and propagation, vol. 16, no. 2, pp. 172–175, 1968. M. Wang, Z. Zhang, and A. Nehorai, “Direction finding using sparse linear arrays with missing data,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3066–3070, 2017. S. Vigneshwaran, N. Sundararajan, and P. Saratchandran, “Direction of arrival (DOA) estimation under array sensor failures using a minimal resource allocation neural network,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 2, pp. 334–343, 2007. C. L. Liu and P. P. Vaidyanathan, “Robustness of coarrays of sparse arrays to sensor failures,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3231–3235, 2018. C. L. Liu and P. P. Vaidyanathan, “Robustness of difference coarrays of sparse arrays to sensor failures—part II: Array geometries,” IEEE Transactions on Signal Processing, vol. 67, no. 12, pp. 3227–3242, 2019. C. L. Liu, “A general framework for the robustness of structured difference coarrays to element failures,” in 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 1–5, 2020. C. L. Liu and P. P. Vaidyanathan, “Optimizing minimum redundancy arrays for robustness,” in 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pp. 79–83, 2018. X. Xu, Z. Ye, Y. Zhang, and C. Chang, “A deflation approach to direction of arrival estimation for symmetric uniform linear array,” IEEE Antennas and Wireless Propagation Letters, vol. 5, pp. 486–489, 2006. Z. Ye and X. Xu, “DOA estimation by exploiting the symmetric configuration of uniform linear array,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 12, pp. 3716–3720, 2007. C. L. Liu and P. P. Vaidyanathan, “Maximally economic sparse arrays and cantor arrays,” in 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1–5, 2017. C. L. Liu and P. P. Vaidyanathan, “Robustness of difference coarrays of sparse arrays to sensor failures—part I: A theory motivated by coarray music,” IEEE Transactions on Signal Processing, vol. 67, no. 12, pp. 3213–3226, 2019. D. H. Johnson and D. E. Dudgeon, Array signal processing: concepts and techniques. Simon & Schuster, Inc., 1992. S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime array configurations for direction-of-arrival estimation,” IEEE Transactions on Signal Processing, vol. 63, no. 6, pp. 1377–1390, 2015. K. Adhikari, J. R. Buck, and K. E. Wage, “Extending coprime sensor arrays to achieve the peak side lobe height of a full uniform linear array,” EURASIP Journal on Advances in Signal Processing, vol. 2014, no. 1, pp. 1–17, 2014. A. Raza, W. Liu, and Q. Shen, “Thinned coprime array for second-order difference coarray generation with reduced mutual coupling,” IEEE Transactions on Signal Processing, vol. 67, no. 8, pp. 2052–2065, 2019. Z. Zheng, W. Q. Wang, Y. Kong, and Y. D. Zhang, “MISC array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect,” IEEE Transactions on Signal Processing, vol. 67, no. 7, pp. 1728–1741, 2019. M. T. Heideman, “Convolution and polynomial multiplication,” in Multiplicative Complexity, Convolution, and the DFT, pp. 27–60, Springer, 1988. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86123 | - |
| dc.description.abstract | 在一維稀疏陣列中,多個感測器以不同的間距被擺放在一直線上。稀疏陣列能夠用O(N)個感測器分辨出O(N^2)個不相關訊號源,原因是差異協列中間之連續片段有O(N^2)的長度,而差異協列定義為陣列中任兩個感測器位置的差所形成的集合。基於差異協列的角度估計器如協同陣列多信號分類,可以使用在差異協列上的資料來估計訊號源角度。經驗上來說,差異協列容易被感測器錯誤所影響,感測器錯誤會隨機發生並造成感測器無法準確地接收信號,因此錯誤的感測器會從陣列中被移除。一旦有感測器被移除,稀疏陣列便不保證能擁有辨別O(N^2)個不相關訊號源的優點。 傳統均勻線性陣列比稀疏陣列更穩健,但其最多只能辨別N-1個不相關訊號源。一個強化稀疏陣列穩健性的方法是將陣列做對稱。本篇論文提出一些關於對稱陣列的性質,例如,被研究過的「廣義1-脆弱性」之上下限。此外,我們證明將互質陣列做對稱後,它可以達到廣義1-脆弱性的下限。 如果每個感測器失敗的機率為p,且互相獨立,那差異協列中間連續片段的期望值可以用機率質量函數的觀點被推導出來。此期望值是變數p的一元多項式。除了能量化一個陣列的穩健性之外,此期望值還適合去比較不同陣列的效能。最後透過模擬的結果,可以展現出在感測器錯誤影響下,對稱陣列的優勢。 | zh_TW |
| dc.description.abstract | In one-dimensional sparse arrays, multiple sensors are placed on a line with different intervals. Sparse arrays are able to distinguish O(N^2) uncorrelated sources with O(N) sensors. The reason is that the difference coarray, defined as the differences between any two sensors of an array, has a central uniform linear array (ULA) segment of length O(N^2). The coarray-based angle estimators such as coarray MUltiple SIgnal Classification (MUSIC) can use the data on the difference coarray to estimate the source directions. Empirically, difference coarrays are easily influenced by sensor failures. They will occur randomly and cause the sensors not to receive the signals accurately. Therefore, the faulty sensors will be removed from the array. Once the sensors are removed, sparse arrays are not guaranteed to have the advantage of identifying the O(N^2) uncorrelated sources. Traditional ULA are known to be more robust than sparse arrays, but they can only resolve at most N-1 uncorrelated sources. A method that can enhance the robustness of sparse arrays is to symmetrize the array. This thesis advances some properties related to the symmetrical arrays. For instance, the upper bound and the lower bound of the generalized 1-fragility are studied. Additionally, we prove that coprime arrays can achieve the lower bound of the generalized 1-fragility after symmetrizing them. If each sensor fails independently with probability p, then the expected value of the size of the central ULA segment in the difference coarray can be derived from the view of the probability mass function (PMF). The expected value is an unary polynomial with the variable p. Besides quantifying the robustness of an array, the expected value is suitable to compare the performance of different arrays. Finally, the benefits of symmetrical arrays under the influence of sensor failures will be shown through the simulation results. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:37:55Z (GMT). No. of bitstreams: 1 U0001-2908202217362500.pdf: 4832712 bytes, checksum: b99c7c0f25d4336950ad5027e8d3466f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xvii Chapter 1 Introduction 1 1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 2 Preliminaries 7 2.1 Data Model of Array Signal Processing . . . . . . . . . . . . . . . . . . 7 2.2 Difference Coarray and Weight Function . . . . . . . . . . . . . . . . . 12 2.3 Review of Sparse Arrays . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Minimum Redundancy Arrays (MRA) . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Nested Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.3 Coprime Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.4 Uniform Linear Arrays (ULA) . . . . . . . . . . . . . . . . . . . . . . 19 2.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Sensor Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.1 Importance Function . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Existing Robustness Metrics . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Coarray-Based DOA Estimation Algorithm . . . . . . . . . . . . . . . . . 29 Chapter 3 Symmetrical Arrays and Proposed Properties 35 3.1 Symmetrical Array Generation . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Relationship between Sets and Relationship between Size of Sets . . . . . 39 3.3 Properties of Importance Function and Generalized 1-fragility . . . . . . 45 3.4 Robustness of Symmetrical Coprime Arrays . . . . . . . . . . . . . . . . 52 3.5 Numerical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 4 Array Analysis with Random Sensor Failures 63 4.1 The Factors Impacting MSE . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.1 Size of U versus MSE . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.2 Sensor Failure Probability versus MSE . . . . . . . . . . . . . . . . . 66 4.2 Derivation and Comparison . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2.1 Expected Value of U Size . . . . . . . . . . . . . . . . . . . . . . . 70 4.2.2 Proposed Robustness Metric . . . . . . . . . . . . . . . . . . . . . . 75 4.2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.3.1 The Expected Value and The Corresponding Approximation . . . . . . . 77 4.2.3.2 Comparison of Different Arrays . . . . . . . . . . . . . . . . . . . 84 4.2.3.3 The Symmetrical Array Compare with The Original Array 88 4.2.3.4 Random Source Direction . . . . . . . . . . . . . . . . . . . . . . . 94 4.3 ULA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3.1 ULA with N sensors and ULA with N + 1 sensors . . . . . . . . . . . . . 98 4.3.2 ULA with N sensors and ULA with N + 2 sensors . . . . . . . . . . . . . 100 4.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Chapter 5 Conclusion and Future Work 109 References 111 | |
| dc.language.iso | en | |
| dc.subject | 稀疏陣列 | zh_TW |
| dc.subject | 對稱陣列 | zh_TW |
| dc.subject | 期望值 | zh_TW |
| dc.subject | 穩健性 | zh_TW |
| dc.subject | 差異協列 | zh_TW |
| dc.subject | 感測器錯誤 | zh_TW |
| dc.subject | robustness | en |
| dc.subject | symmetrical arrays | en |
| dc.subject | sparse arrays | en |
| dc.subject | expected value | en |
| dc.subject | sensor failures | en |
| dc.subject | difference coarrays | en |
| dc.title | 基於感測器錯誤與陣列對稱性的稀疏陣列穩健性分析 | zh_TW |
| dc.title | Robustness Analysis of Sparse Arrays with Sensor Failures and Array Symmetry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇柏青(Borching Su),馮世邁(See-May Phoong) | |
| dc.subject.keyword | 稀疏陣列,差異協列,感測器錯誤,穩健性,對稱陣列,期望值, | zh_TW |
| dc.subject.keyword | sparse arrays,difference coarrays,sensor failures,robustness,symmetrical arrays,expected value, | en |
| dc.relation.page | 114 | |
| dc.identifier.doi | 10.6342/NTU202202947 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-09-30 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2908202217362500.pdf | 4.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
