Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86100
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張淑惠(Shu-Hui Chang)
dc.contributor.authorHui-Chu Hsiehen
dc.contributor.author謝蕙竹zh_TW
dc.date.accessioned2023-03-19T23:36:50Z-
dc.date.copyright2022-09-19
dc.date.issued2022
dc.date.submitted2022-09-12
dc.identifier.citationBanerjee S., Wall M. M., and Carlin B.P. (2003) Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics, 4, 123–142. Brunsden C., Fotheringham A. S., and Charlton M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical analysis, 28, 281-298. Cai J., Fan J., Li R., and Zhou H. (2005). Variable selection for multivariate failure time data. Biometrika, 92, 303-316. Cao H., Churpek M. M., Zeng D., and Fine J. P. (2015). Analysis of the proportional hazards model with sparse longitudinal covariates. Journal of the American Statistical Association, 110, 1187-1196. Chan T. C., Chiang P. H., Su M. D., Wang H. W., and Liu M. S. (2014) Geographic Disparity in Chronic Obstructive Pulmonary Disease (COPD) Mortality Rates among the Taiwan Population. PLOS ONE 9: e98170 pmid:24845852 Chan T. C., Wang H. W., Tseng T. J., and Chiang P. H. (2015) Spatial clustering and local risk factors of chronic obstructive pulmonary disease (COPD). International Journal of Environmental Research and Public Health, 12, 15716-15727. Chan T. C., Zhang Z., Lin B. C., Lin C., Deng H. B., Chuang Y. C., Chan J. W.M., Jiang W. K., Tam T., Chang L. Y., Hoek G., Lau A. K.H., and Lao X. Q. (2018) Long-Term exposure to ambient fine particulate matter and chronic kidney disease: A cohort study. Environmental Health Perspectives, 126, Article 107002. Chernoukhov A., Hussein A., Nkurunziza S., and Bandyopadhyay D. (2018) Bayesian inference in time-varying additive hazards models with applications to disease mapping. Environmetrics, 29(5-6), e:2478. Cox, D. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B, 74, 187-220. Cox D. R. (1975). Partial likelihood. Biometrika, 62, 269-276. Do Y. K., Carpenter W. R., Spain P., Clark J. A., Hamilton R. J., Galanko J. A., Jackman A., Talcott J. A., and Godley P. A. (2010) Race, healthcare access and physician trust among prostate cancer patients. Cancer Causes Control, 21, 31-40. Efron B., Hastie T, Johnstone I, and Tibshirani R. (2004). Least angle regression. The Annals of Statistics, 32, 407-499. Fan J., Lin H., and Zhou Y. (2006). Local partial-likelihood estimation for lifetime data. The Annals of Statistics, 34, 290-325. Fan J. and Li R. (2002). Variable selection for Cox’s proportional hazards model and frailty model. The Annals of Statistics, 30, 74-99. Fu W. (1998). Penalized regression: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 7, 397-416. Gelfand A. E., Kim H. J., Sirmans C. F., and Banerjee S. (2003). Spatial Modeling with Spatially Varying Coefficient Processes. Journal of American Statistical Association, 98, 387-396. Hastie T. and Tibshirani R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society, Series B, 55, 757-796. Hennerfeind A., Brezger A., and Fahrmeir L. (2006). Geoadditive survival model. Journal of the American Statistical Association, 101, 1065–1075. Hurtado Rúa S. M. and Dey D. K. (2019). A Bayesian piecewise survival cure rate model for spatially clustered data. Spatial and Spatio-temporal Epidemiology, 29, 149-159. Kalbfleisch, J. and Prentice, R. (1980). The Statistical Analysis of Failure Time Data, Wiley, New York. Li L., Hanson T., and Zhang J. (2015). Spatial extended hazard model with application to prostate cancer survival. Biometric, 71, 313-322. Lyu T., Luo X., Huang C., and Sun Y. (2021). Additive rates model for recurrent event data with intermittently observed time-dependent covariates. Statistical Methods in Medical Research, 30, 2239-2255. Ma Z., Xue Y., and Hu G. (2020). Heterogeneous regression models for clusters of spatial dependent data. Spatial Economic Analysis, 15(4), 459-475. Mu J., Wang G., and Wang L. (2018). Estimation and inference in spatially varying coefficient models. Environmetrics, 29: e2485. Sung H., Ferlay J., Siegel R. L., Laversanne M., Soerjomataram I., Jemal A., and Bray F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. Therneau T. M., Grambsch P. M., and Pankratz V. S. (2003). Penalized survival models and frailty. Journal of Computational and Graphical Statistics, 12, 156-175. Tibshirani R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B, 58(1), 267-288. Tibshirani R. (1997). The Lasso method for variable selection in the Cox model. Statistics in Medicine, 16, 385-395. Verweij P. J. M. and Van Houwelingen H. C. (1994). Penalized likelihood in Cox regression. Statistics in Medicine, 13, 2427-2436. Wang S., Zhang J., and Lawson A. B. (2016). A Bayesian normal mixture accelerated failure time spatial model and its application to prostate cancer. Statistical Methods in Medical Research, 25(2), 793-806. Xue Y., Schifano E. D., & Hu G. (2020) Geographically Weighted Cox Regression for Prostate Cancer Survival Data in Louisiana. Geographical analysis, 52, 570-587. Yin P., Feng X., Astell-Burt T., Qi F., Liu Y., Liu J., Page A., Wang L., Liu S., Wang L., and Zhou M. (2016). Spatiotemporal Variations in Chronic Obstructive Pulmonary Disease Mortality in China: Multilevel Evidence from 2006 to 2012. Journal of Chronic Obstructive Pulmonary Disease, 13, 339-344. Yuan M. and Lin Y. (2006) Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society. Series B, 68(1), 49-67. Zhang H. H. and Lu W. (2007). Adaptive Lasso for Cox’s proportional hazards model. Biometrika, 94, 691-703. Zhou H., Hanson T., Jara A., and Zhang J. (2015). Modeling county level breast cancer survival data using a covariate-adjusted frailty proportional hazards model. The Annals of Applied Statistics, 9(1), 43-68. Zhou H., Hanson T., and Zhang J. (2017). Generalized accelerated failure time spatial frailty model for arbitrarily censored data. Lifetime Data Anal, 23, 495-515. Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101, 1418–1429.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86100-
dc.description.abstract在流行病學長期追蹤研究中,某些疾病的發生和/或死亡可能會受到地理分布的影響。舉例而言,由於空氣汙染為公共衛生中最重要的議題之一,某些疾病的發生和/或死亡與不同地區的汙染物來源和濃度之間的相關性倍廣泛研究。在空間流行病學研究中,建立包含與地理分布有關的空間因子之統計模型是很重要的。因此,我們提出納入空間變數之比例風險模型,並允許其共變數效應可為隨空間變化和不隨區域而改變。在我們提出的模型中,欲估計的參數個數將隨區域與共變數增加而增長。為了解決過多的參數與空間稀疏性的問題,我們在所有區域之參數絕對值總和中引入懲罰項,並藉由核函數在部分概似中使用某區域之鄰近區域之資訊來發展一種估計方法。最後以台灣地區為架構進行模擬分析檢驗所提出估計式之有限樣本表現量,並比較不同懲罰力度、核函數下之估計表現。zh_TW
dc.description.abstractIn epidemiologic follow-up studies, the occurrence and/or death of certain disease may be influenced by geographic distribution. For example, the association patterns between the occurrence and/or death of certain disease and the pollutant sources and concentrations in different areas has been widely studied since air pollution is one of the most important issues in public health. In spatial epidemiology studies, it is important to establish statistical models including the spatial factors related to geographic distribution. Therefore, we propose a proportional hazards model that not only incorporates spatial covariates but also allows the covariate effects to be spatially varying and invariant across areas. In the proposed model, the number of parameters to be estimated increases as the number of areas and covariates increases. For tackling the issues of the large number of parameters and spatial sparseness, we develop an estimation method by introducing the penalty term in sum of absolutely values of parameters across all areas and a kernel function using the information of neighboring regions in an area into the partial likelihood. In the finite-sample simulation study, the Taiwan regions are used as the spatial framework to examine the performance of the proposed estimates with different penalty levels and kernel functions.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:36:50Z (GMT). No. of bitstreams: 1
U0001-0709202200491500.pdf: 4763035 bytes, checksum: ceb421314695accff28c49d3b1ea9401 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 I 摘要 II ABSTRACT III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 序論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 6 2.1 地理加權迴歸(GWR) 6 2.1.1 地理加權線性迴歸模型與估計方法 6 2.1.2 地理加權比例風險模型與估計方法 7 2.1.3 隨機鄰近區域加權函數(Stochastic Neighborhood Weighting Function) 8 2.2 變化係數模型(VARYING COEFFICIENT MODEL) 9 2.3 具懲罰性的比例風險模型(PENALIZED PH MODEL) 10 2.3.1 最小絕對壓縮挑選機制(lasso) 10 2.3.2 適應性最小絕對壓縮挑選機制(adaptive lasso) 11 2.4 核函數估計方式(KERNEL FUNCTION ESTIMATION METHOD) 13 第三章 方法 15 3.1 符號定義與假設 15 3.2 估計方法 17 第四章 模擬 21 第五章 結果與討論 39 參考文獻 41 附錄 45 附錄一 對數部分概似函數之二次近似 45 附錄二 對數部分概似函數微分式 47 附錄三 各鄉鎮估計結果 50
dc.language.isozh-TW
dc.title具空間變化係數的 Cox 比例風險模型之懲罰性估計zh_TW
dc.titlePenalized Estimation for Cox Proportional Hazards Models with Spatially Varying Coefficientsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡政安(Chen-An Tsai),溫在弘(Tzai-Hung Wen)
dc.subject.keyword空間變化係數,Cox 比例風險模型,懲罰項,核函數,空間流行病學,zh_TW
dc.subject.keywordspatially varying coefficients,Cox proportional hazards model,penalty term,kernel function,spatial epidemiology,en
dc.relation.page185
dc.identifier.doi10.6342/NTU202203212
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-12
dc.contributor.author-college共同教育中心zh_TW
dc.contributor.author-dept統計碩士學位學程zh_TW
dc.date.embargo-lift2022-09-19-
顯示於系所單位:統計碩士學位學程

文件中的檔案:
檔案 大小格式 
U0001-0709202200491500.pdf4.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved