Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86066
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳洵毅(Hsun-Yi Chen)
dc.contributor.authorNicholson Honggoen
dc.contributor.author黃獻宏zh_TW
dc.date.accessioned2023-03-19T23:35:15Z-
dc.date.copyright2022-09-16
dc.date.issued2022
dc.date.submitted2022-09-13
dc.identifier.citationAdekunle, K., and J. Okolie. 2015. A Review of Biochemical Process of Anaerobic Digestion. Advances in Bioscience and Biotechnology, 06, 205-212. AFA. 2018. Rice. Taipei: The Agriculture and Food Agency, Council of Agriculture, Executive Yuan, R.O.C. Available at: https://www.afa.gov.tw/eng/index.php?code=list&flag=detail&ids=474&article_id=3741. Accessed 11 October 2021. Angelidaki, I., and W. Sanders. 2004. Assessment of the anaerobic biodegradability of macropollutants. Re/Views in Environmental Science & Bio/Technology, 3(2), 117-129. APHA, AWWA, and WEF. 1992. Standard Methods for the Examination of Water and Wastewater, 18th edition. Astals, S., V. Nolla-Ardèvol, and J. Mata-Alvarez. 2012. Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresource Technology, 110, 63-70. Bindu, M.S. and J. Manan. 2018. Ways and Means of Paddy Straw Management: A Review. Journal for Reviews on Agriculture and Allied Fields, 1(1), 1–8. Buffiere, P., D. Loisel, N. Bernet, and J.P. Delgenes. 2006. Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci Technol, 53(8), 233-241. BSMI. 2021. Method of Test for Ash in Wood. Taipei: Bureau of Standards, Metrology and Inspection, Ministry of Economic Affairs. Available at: https://cns-standards.org/CNS_standard_cn.asp?CODE=CNS%203084. Accesed 10 September 2022. Chandler, J. A., W. J. Jewell, J. M. Gossett, P. J. Van Soest, and J. B. Robertson. 1980. Predicting methane fermentation biodegradability. Biotechnology and Bioengineering Symposium No. 10, pp. 93-107. Chang, C.-H., C.-C. Liu, and P.-Y. Tseng. 2012. Emissions Inventory for Rice Straw Open Burning in Taiwan Based on Burned Area Classification and Mapping Using Formosat-2 Satellite Imagery. Aerosol and Air Quality Research, 13. Chen, Y.-C. 2017. Anaerobic Co-digestion of Bamboo Biomass and Swine Manure. Master Thesis. Taipei: National Taiwan University, Department of Bio-Industrial Mechatronics Engineering. (In Chinese) Chiu, T.-M. 2009. Daocao zai liyong – di tan nengyuan daocao xianwei jiujing [Rice Straw Reuse – Low Carbon Energy as Straw Cellulosic Ethanol]. Harvest Semi-monthly, 59(13): 54-57. (In Chinese) Choi, Y., J. Ryu, and S. R. Lee. 2020. Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J Anim Sci Technol, 62(1), 74-83. Chou, C.-Y., Hsu, W.-C., and Tsai, M.-J. 1997. The Current Status and Treatment Policy of Agricultural Wastes in Taiwan: I. Crop Wastes. Taipei: National Taiwan University, Department of Agricultural Engineering. (In Chinese) COA, Executive Yuan. 2021. Yearly Report of Taiwan’s Agriculture 2020: Crop Production. Taipei: Council of Agriculture, Executive Yuan, R.O.C. Available at: https://eng.coa.gov.tw/upload/files/eng_web_structure/2505655/2-1%E8%BE%B2%E6%A5%AD%E7%94%9F%E7%94%A2(109).pdf. Accessed 11 October 2021. COA, Executive Yuan. 2022. Reports on The Number of Pig Survey. Taipei: Council of Agriculture, Executive Yuan, R.O.C. Available at: https://www.naif.org.tw/upload/47/20220825_111746.27705.pdf. Accessed 10 June 2022. Dandikas, V., H. Heuwinkel, F. Lichti, J. E. Drewes, and K. Koch. 2015. Correlation between Biogas Yield and Chemical Composition of Grassland Plant Species. Energy & Fuels, 29(11), 7221-7229. EPA. 2021. The Sources and Solutions: Agriculture. Washington, D.C.: United States Environmental Protection Agency. Available at: https://www.epa.gov/nutrientpollution/sources-and-solutions-agriculture. Accessed 12 June 2022. Forestry Bureau. 2019. Zhucai ziyuan ling feiqi huashen sheng zhi ranliao ai diqiu [Zero Waste of Bamboo Resources, Incarnation of Biomass Fuel, and Love of Earth]. Taipei: Forestry Buerau, Council of Agriculture, Executive Yuan, R.O.C. Available at: https://www.forest.gov.tw/0000013/0063999. Accessed 3 July 2022. (In Chinese) Gadde, B., S. Bonnet, C. Menke, and S. Garivait. 2009. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 157(5), 1554-1558. Girotto, F., and R. Cossu. 2017. Animal Waste: Opportunities and Challenges. In “Sustainable Agriculture Reviews”, ed. E. Lichtfouse, Sustainable Agriculture Reviews, 22, 1-13. Gujer, W., and A. J. B. Zehnder. 1983. Conversion Processes in Anaerobic Digestion. Water Science and Technology, 15(8-9), 127-167. He, Y., Y. Pang, Y. Liu, X. Li, and K. Wang. 2008. Physicochemical Characterization of Rice Straw Pretreated with Sodium Hydroxide in the Solid State for Enhancing Biogas Production. Energy & Fuels, 22(4), 2775-2781. Hung, C-.M. 2018a. Fei zhu bian heijin, gu keng ma yuan fazhan shengwu tan jiejue naoren nongye feiqi wu [Bamboo waste becomes the black gold, Gukeng’s Mayuan Develops Biochar to Solve Bugging Agricultural Waste]. Taipei: AgriHarvest. Available at: https://www.agriharvest.tw/archives/16224. Accessed 3 July 2022. (In Chinese) Hung, C-.M. 2018b. Zhu feiliao yeyou chuntian, jiehe qi hua fadian xun chulu [Bamboo Waste Also Has Spring, Gasification for Power Generation as a Way Out]. Taipei: AgriHarvest. Available at: https://www.agriharvest.tw/archives/12679. Accessed 3 July 2022. (In Chinese) Jiang, X., Z. Chen, and M. Dharmasena. 2015. 13 - The role of animal manure in the contamination of fresh food. In “Advances in Microbial Food Safety”, ed. J. Sofos, 312-350. Oxford: Woodhead Publishing. Khalid, A., M. Arshad, M. Anjum, T. Mahmood, and L. Dawson. 2011. The anaerobic digestion of solid organic waste. Waste Management, 31(8), 1737-1744. Khan, M. A., H. H. Ngo, W. S. Guo, Y. Liu, L. D. Nghiem, F. I. Hai, L. J. Deng, J. Wang, and Y. Wu. 2016. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresource Technology, 219, 738-748. Koh, M.-T., B.-Y. Wang, Y.-F. Lin, C.-W. Liao, T.-M. Su, and A.-K. Su. 2010. Chu qin fenniao liang ji qi chengfen [Livestock Manure and Urine and Its Composition]. Tainan: Animal Production Laboratory, Council of Agriculture, Executive Yuan, R.O.C. Available at: https://kmweb.coa.gov.tw/files/subject_WS/24952/18810392871.pdf. Accessed 10 June 2022. (In Chinese) Kuo, W.-C. 2020. Effect of Chemical Pretreatment on Anaerobic Co-digestion of Poly-lactic Acid and Digestate. Master Thesis. Taipei: National Taiwan University, Department of Biomechatronics Engineering. (In Chinese) Labatut, R. A., L. T. Angenent, and N. R. Scott. 2011. Biochemical methane potential and biodegradability of complex organic substrates. Bioresource Technology, 102(3), 2255-2264. Lin, Y.-S. 2016. Mesophilic Anaerobic Co-Digestion of Vegetable Wastes and Swine Manure. Master Thesis. Taipei: National Taiwan University, Department of Bio-Industrial Mechatronics Engineering. (In Chinese) Liu, T., T. Klammsteiner, A. M. Dregulo, V. Kumar, Y. Zhou, Z. Zhang, and M. K. Awasthi. 2022. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. Science of The Total Environment, 833, 155122. Mata-Alvarez, J., J. Dosta, M. S. Romero-Güiza, X. Fonoll, M. Peces, and S. Astals. 2014. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412-427. McCarty, P. L. 1964. Anaerobic waste treatment fundamentals, Part 1: Chemistry and Microbiology. Public works, 95(9), 107-112. McCarty, P. L., and D. P. Smith. 1986. Anaerobic wastewater treatment. Environmental Science & Technology, 20(12), 1200-1206. MOJ. 2019. Effluent Standards: Table 8. Taipei: The R.O.C Laws and Regulations Database, Ministry of Justice. Available at: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=O0040004. Accessed 13 March 2021. Monlau, F., C. Sambusiti, A. Barakat, X. M. Guo, E. Latrille, E. Trably, J.-P. Steyer, and H. Carrere. 2012. Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol, 46(21), 12217-12225. Nguyen, V. H., S. Topno, C. Balingbing, V. C. N. Nguyen, M. Röder, J. Quilty, C. Jamieson, P. Thornley, and M. Gummert. 2016. Generating a positive energy balance from using rice straw for anaerobic digestion. Energy Reports, 2, 117-122. Pabón-Pereira, C. P., H. V. M. Hamelers, I. Matilla, and J. B. van Lier. 2020. New Insights on the Estimation of the Anaerobic Biodegradability of Plant Material: Identifying Valuable Plants for Sustainable Energy Production. Processes, 8(7), 806. Richard, T. 1996. The Effect of Lignin on Biodegradability. Ithaca, NY: Cornell Waste Management Institute. Available at: http://compost.css.cornell.edu/calc/lignin.html. Accessed 10 August 2022. Rico, C., N. Muñoz, and J. L. Rico. 2015. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate. Bioresource Technology, 189, 327-333. Sheen, S., C. Hong, M. T. Koh, C. Su, and Y. Harada. 1994. Swine waste treatment in Taiwan. Tainan: Department of Livestock Management, Taiwan Livestock Research Institute. Available at: https://www.fftc.org.tw/en/publications/main/1337. Accessed 3 July 2022. Shen, Y., J. L. Linville, M. Urgun-Demirtas, M. M. Mintz, and S. W. Snyder. 2015. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renewable and Sustainable Energy Reviews, 50, 346-362. Siddique, M. N. I., and Z. A. Wahid. 2018. Achievements and perspectives of anaerobic co-digestion: A review. Journal of Cleaner Production, 194, 359-371. Silvestre, G., J. Illa, B. Fernández, and A. Bonmatí. 2014. Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties. Applied Energy, 117, 87-94. Sukhesh, M. J., A. Muske, and P. Venkateswara Rao. 2019. Multi-substrate anaerobic co-digestion of citrus pulp, lawn grass, and chicken manure—A batch study. Environmental Progress & Sustainable Energy, 38(5), 13153. Symons, G. E., and A. M. Buswell. 1933. The Methane Fermentation of Carbohydrates1,2. Journal of the American Chemical Society, 55(5), 2028-2036. Tanimu, I., T. Mohd Ghazi, M. Harun, and A. Idris. 2014. Effect of Carbon to Nitrogen Ratio of Food Waste on Biogas Methane Production in a Batch Mesophilic Anaerobic Digester. International Journal of Innovation, Management and Technology, 5, 116-119. Thomsen, S. T., H. Spliid, and H. Østergård. 2014. Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass. Bioresource Technology, 154, 80-86. Triolo, J. M., S. G. Sommer, H. B. Møller, M. R. Weisbjerg, and X. Y. Jiang. 2011. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresource Technology, 102(20), 9395-9402. Wang, J, and C.-H. Chen. 2017. Taiwan zhu chanye zhi fazhan [Development of Taiwan’s Bamboo Industry]. Taipei: Taiwan Forestry Research Institute. Available at: https://www.tfri.gov.tw/main/science_in.aspx?mnuid=5378&modid=2&nid=5731&cid=1216. Accessed 3 July 2022. (In Chinese) Wang, X., G. Yang, Y. Feng, G. Ren, and X. Han. 2012. Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource Technology, 120, 78-83. Wang, X., G. Yang, F. Li, Y. Feng, G. Ren, and X. Han. 2013. Evaluation of two statistical methods for optimizing the feeding composition in anaerobic co-digestion: mixture design and central composite design. Bioresour Technol, 131, 172-178. Xie, S., F. I. Hai, X. Zhan, W. Guo, H. H. Ngo, W. E. Price, and L. D. Nghiem. 2016. Anaerobic co-digestion: A critical review of mathematical modelling for performance optimization. Bioresour Technol, 222, 498-512. Yadvika, Santosh, T. R. Sreekrishnan, S. Kohli, and V. Rana. 2004. Enhancement of biogas production from solid substrates using different techniques––a review. Bioresource Technology, 95(1), 1-10. Ye, J., D. Li, Y. Sun, G. Wang, Z. Yuan, F. Zhen, and Y. Wang. 2013. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Management, 33(12), 2653-2658. Zhao, M., Y. Wang, C. Zhang, S. Z. Li, Z. Huang, and W. Ruan. 2014. Synergistic and Pretreatment Effect on Anaerobic Co-Digestion from Rice Straw and Municipal Sewage Sludge. BioResources, 9(4), 5871-5882.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86066-
dc.description.abstract隨著台灣的養豬戶慢慢轉向大規模養殖,為滿足所需的廢水排放標準,針對養豬場廢水處理系統的需求將越來越高。台灣常見的廢水處理方式是由畜產試驗所(Taiwan Livestock Research Institute, TLRI)開發的三段式處理系統,其中包括1)固液分離、2)厭氧消化以及3)好氧處理,依次進行。然而,由於好氧處理的耗能性質,因此提出了另一種省略好氧池的處理系統:可用第二階段厭氧反應槽代替好氧池,第一階段厭氧反應槽的污水可與農業廢棄物如稻草(RS)和林業廢棄物如竹子廢棄物(BW)共同消化。第二階段厭氧共消化代替好氧池的優點是,除了可處理更多的廢棄物,同時又可減少厭氧池的能量消耗,又可產生更多的再生能源。 在本研究,豬糞尿初次消化液(Swine Wastewater Effluent, SWE)是由實驗室規模的第一階段連續攪拌式反應槽 (Continuously Stirred Tank Reactor, CSTR)中所收集,該CSTR在37oC和HRT 10天內消化了TS為8%的新鮮豬糞尿(Fresh Swine Manure, FSM)。第二階段的厭氧CSTR在37oC下分批進行。SWE的量固定為3,000 mL,RS+BW的量固定為200 g。本研究的目的是比較不同的RS:BW混合比例對厭氧共消化之差異,共進行了 100:0(R100)、80:20(R80)、60:40(R60)、40:60(R40)、20:80(R20)和0:100(R0)6個批次的試驗。每一批次都是兩重複(Duplicate),包括參考點的空白試驗。 由於RS具有較佳的生物降解性,因此RS比率越高,固體去除率越高,單位VS的甲烷產量就越高。實驗結果顯示最低和最高的總固形物去除率(s-RTS)分別為R0批次的8.09%和R100批次的49.84%。最低和最高的揮發性固形物去除率(s-RVS)在批次R0和批次R100中分別為12.17%和57.37%。單位甲烷產量(Methane Yield)在R0中最低,為0.036 L CH4/g VS added,R80中最高,為0.171 L CH4/g VS added,而R100的單位甲烷產量僅略低於R80為0.169 L CH4/g VS added。就去除的VS而言,所有批次的單位甲烷產量平均為0.311 L CH4/g VS destroyed,它也可以被視為VS-甲烷轉化率。至於BW的生物降解性比RS低的原因,過去的研究曾指出纖維素和木質素之和與厭氧生物降解性呈負相關,而本研究所呈現的結果與前人的研究一致。zh_TW
dc.description.abstractAs Taiwan’s swine farmers are moving away from small scale farming to bigger scale farming, more swine farms will need proper wastewater management to meet the required wastewater discharge standard. The common state-of-the-art wastewater treatment in Taiwan is three-stage treatment system developed by Taiwan Livestock Research Institute (TLRI), which includes 1) solid-liquid separation, 2) anaerobic digestion, and 3) aerobic treatment, in sequence. However, since the aerobic treatment is energy intensive, another alternative treatment system without one is proposed: the aerobic tank could be substituted with second-stage anaerobic reactor which co-digest effluent from first-stage anaerobic reactor as the seeding bacteria with agricultural waste, such as rice straw (RS), and forestry waste, such as bamboo waste (BW). The advantage of second-stage anaerobic co-digestion instead of aerobic treatment is that it can treat additional waste, which otherwise would go untreated, while at the same time produce more green bio-energy and save cost. This research explored this idea by experimenting with anaerobic co-digestion in the second-stage anaerobic reactor, using first-stage anaerobic effluent as the seeding bacteria. In this research, swine wastewater effluent (SWE) was collected from simulated, lab scale, first-stage semi-continuous anaerobic CSTRs that digested TS 8% of fresh swine manure (FSM) at 37 ± 1 oC and HRT 10 days. The second-stage anaerobic CSTRs were operated in batch at 37 ± 1 oC. The amount of SWE was fixed with 3000 mL : 200 g ratio compared to biomass mixture, which comprises of RS and BW. The aim of this research is to investigate the differences among 6 different RS:BW mixing ratios: 100:0 (R100), 80:20 (R80), 60:40 (R60), 40:60 (R40), 20:80 (R20), and 0:100 (R0). Each was done in duplicate, including blanks for the reference point. Since RS has better biodegradability, the higher the RS ratio, the higher the solids removal efficiency, and the higher the methane yield per gram of VS added. Lowest and highest s-RTS is 8.09% in batch R0 and 49.84% in batch R100, respectively. Lowest and highest s-RVS is 12.17% in batch R0 and 57.37% in batch R100, respectively. The methane yield is lowest in R0 at 0.036 L/g VS added, and the highest in R80 at 0.171 L/g VS added, although R100 methane yield was only slightly below at 0.169 L/g VS added. In terms of VS destroyed, all of the batches averaged at methane yield of 0.311 L/g VS destroyed. It could also be interpreted as VS-methane conversion rate. As for the reason of lower biodegradability in BW as compared to RS, lignocellulosic composition analysis of them was done. Three other studies were also incorporated in the lignocellulosic composition comparison. The result was in line with previous studies’ conclusions that the lignin content is negatively correlated with anaerobic biodegradability. Thus, higher lignin content would yield lower biogas and methane yield.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:35:15Z (GMT). No. of bitstreams: 1
U0001-1309202223134000.pdf: 3130889 bytes, checksum: b1af6f806b94cd1095a0bd1da602d772 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAcknowledgements i 中文摘要 ii Abstract iv Table of Contents vi List of Figures viii List of Tables x List of Abbreviations xi Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Anaerobic Digestion 3 2.1.1 Anaerobic Co-Digestion 5 2.2 Agricultural Waste 6 2.2.1 Animal Waste 6 2.2.2 Biomass Waste 10 2.2.3 Application of Anaerobic Co-digestion 11 Chapter 3 Materials and Methods 13 3.1 Research Process and Structure 13 3.1.1 Experimental Design 14 3.2 Materials 16 3.2.1 SWE as Seeding Bacteria 16 3.2.2 Rice Straw and Bamboo Waste 16 3.2.3 Reactor 18 3.3 Analytical Methods 21 3.3.1 Wastewater Analysis 21 3.3.2 Gas Analysis 21 3.3.3 Chemical Composition 22 Chapter 4 Results and Discussion 23 4.1 Preliminary Test 23 4.2 Wastewater Analysis 27 4.3 Total Biogas Production and Methane Content 31 4.4 Biogas and Methane Yield 34 4.5 Effect of Biochemical Composition on Methane Yield and Biodegradability 38 4.5.1 Lignin 38 4.5.2 Cellulose 42 4.6 Daily Biogas and Methane Production 43 Chapter 5 Conclusions and Future Works 48 5.1 Conclusions 48 5.2 Future Works 48 Reference 50
dc.language.isoen
dc.subject竹材zh_TW
dc.subject甲烷zh_TW
dc.subject稻稈zh_TW
dc.subject厭氧共消化zh_TW
dc.subject木質纖維素zh_TW
dc.subjectLignocelluloseen
dc.subjectAnaerobic Co-digestionen
dc.subjectMethaneen
dc.subjectRice Strawen
dc.subjectBambooen
dc.title豬糞尿水初次消化液與稻稈、竹材之厭氧共消化zh_TW
dc.titleAnaerobic Co-digestion of Predigested Swine Wastewater Effluent with Rice Straw and Bamboo Wasteen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor周楚洋(Chu-Yang Chou)
dc.contributor.oralexamcommittee葉仲基(Chung-Kee Yeh),柯淳涵(Chun-Han Ko)
dc.subject.keyword厭氧共消化,甲烷,稻稈,竹材,木質纖維素,zh_TW
dc.subject.keywordAnaerobic Co-digestion,Methane,Rice Straw,Bamboo,Lignocellulose,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202203377
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
dc.date.embargo-lift2022-09-16-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-1309202223134000.pdf3.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved