請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86065
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅立(Li Lo) | |
dc.contributor.author | Wei-Zhu Chen | en |
dc.contributor.author | 陳韋竹 | zh_TW |
dc.date.accessioned | 2023-03-19T23:35:12Z | - |
dc.date.copyright | 2022-10-06 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-15 | |
dc.identifier.citation | Alam, M., Sansing, T. B., Guerra, J. R., & Harmon, A. D. (1981). Dinoflagellate sterols IV: Isolation and structure of 4α, 23ξ, 24ξ-trimethylcholestanol from the dinoflagellate Glenodinium hallii. Steroids, 38(4), 375-382. https://doi.org-/10.1016/0039-128X(81)90072-6 Assessment, A. C. I. (2005). Arctic climate impact assessment, Cambridge University Press Cambridge. Bains, S., et al. (2000). Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature, 407(6801), 171-174. https://doi.org/10.1038/35025035 Barbier, M., Reichstein, T., Schindler, O., & Lederer, E. (1959). Isolation of 24-methylene-cholesterol from honey bees (Apis mellifica L). Nature, 184(4687), 732-733. https://doi.org/10.1038/184732a0 Belt, S. T., et al. (2013). Quantitative measurement of the sea ice diatom biomarker IP25 and sterols in Arctic sea ice and underlying sediments: Further considerations for palaeo sea ice reconstruction. Organic Geochemistry 62: 33-45. https://doi.org/10.1016/j.orggeochem.2013.07.002 Belt, S. T., et al. (2012). A reproducible method for the extraction, identification and quantification of the Arctic sea ice proxy IP25 from marine sediments. Analytical Methods 4(3). https://doi.org/10.1039/C2AY05728J Belt, S. T., et al. (2015). Identification of paleo Arctic winter sea ice limits and the marginal ice zone: Optimized biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth and Planetary Science Letters 431: 127-139. Belt, S. T., et al. (2015). Identification of paleo Arctic winter sea ice limits and the marginal ice zone: Optimized biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth and Planetary Science Letters 431: 127-139. Berger, A., et al. (1999). Modelling northern hemisphere ice volume over the last 3 Ma. Quaternary Science Reviews 18(1): 1-11. https://doi.org/10.1016/S0277-3791(98)00033-X Berner, R. A. (1997). The rise of plants and their effect on weathering and atmospheric CO2. Science, 276(5312), 544-546. https://doi.org/10.1126/science.-276.5312.544 Broström, A., et al. (2008). Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review. Vegetation history and archaeobotany 17(5): 461-478. https://doi.org/10.1007/s00334-008-0148-8 Chou, Y.M. (2003). Magnetic Study of Core MD012414 from Okhotsk Sea ─ Paleoclimate and Paleoenvironment Changes of Northeastern Asia Since 1.8 Ma. Master thesis, National Taiwan Normal University, Taipei. https://hdl.handle.-net/11296/y6kfjc Chou, Y.M., et al. (2011). Magnetostratigraphy of marine sediment core MD01-2414 from Okhotsk Sea and its paleoenvironmental implications. Marine Geology 284(1-4): 149-157. https://doi.org/10.1016/j.margeo.2011.03.015 Clark, P. U., et al. (2006). The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews 25(23-24): 3150-3184. https://doi.org/10.1016-/j.quascirev.2006.07.008 Detlef, H., Belt, S. T., Sosdian, S. M., Smik, L., Lear, C. H., Hall, I. R., ... & Kender, S. (2018). Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea. Nature communications, 9(1), 1-11. https://doi.org/10.1038/s41467-018-02845-5 de Wet, G. A., et al. (2016). A high-resolution mid-Pleistocene temperature record from Arctic Lake El'gygytgyn: a 50 kyr super interglacial from MIS 33 to MIS 31? Earth and Planetary Science Letters 436: 56-63. https://doi.org/-10.1016/j.epsl.2015.12.021 DeConto, R. M., et al. (2012). Modeling Antarctic ice sheet and climate variations during Marine Isotope Stage 31. Global and Planetary Change 88-89: 45-52. https://doi.org/10.1016/j.gloplacha.2012.05.018 Elderfield, H., et al. (2012). Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337(6095): 704-709. https://doi.org/10.1126/science.122129 Goad, L. J, et al. (1974). Phytosterol side chain biosynthesis. Lipids, 9(8), 582-595. https://doi.org/10.1007/BF02532508 Hall, D. O., & Scurlock, J. M. O. (1991). Climate change and productivity of natural grasslands. Annals of botany, 49-55. https://www.jstor.org/stable/42758390 Haug, G. H. (1995). Zur Paläo-Ozeanographie und Sedimentationsgeschichte im Nordwest-Pazifik während der letzten 6 Millionen Jahre (ODP-Site 882). PhD Thesis, Mathematisch-Naturwissenschaftliche Fakultät der Christian-Albrechts-Universität zu Kiel, Germany. Herguera, J. C. (1992). Deep-sea benthic foraminifera and biogenic opal: glacial to postglacial productivity changes in the western equatorial Pacific. Marine Micropaleontology 19(1-2): 79-98. https://doi.org/10.1016/0377-8398(92)90022-C Hofgaard, A., et al. (1999). Dendroclimatic response of Picea mariana and Pinus banksiana along a latitudinal gradient in the eastern Canadian boreal forest. Canadian Journal of Forest Research 29(9): 1333-1346. https://doi.org/10.1139-/x99-073 Honda, M. C., Imai, K., Nojiri, Y., Hoshi, F., Sugawara, T., & Kusakabe, M. (2002). The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment-trap experiments (1997–2000). Deep Sea Research Part II: Topical Studies in Oceanography, 49(24-25), 5595-5625. https://doi.org/10.1016/S0967-0645(02)00201-1 Ivlev, V. S. (1966). The biological productivity of waters. Journal of the Fisheries Board of Canada, 23(11), 1727-1759. https://doi.org/10.1139/f66-160 Joussaume, S., & Taylor, K. E. (1995). Status of the paleoclimate modeling intercomparison project (PMIP). World Meteorological Organization-Publications-WMO TD, 425-430. Koenig, S. J., DeConto, R. M., & Pollard, D. (2011). Late Pliocene to Pleistocene sensitivity of the Greenland Ice Sheet in response to external forcing and internal feedbacks. Climate dynamics, 37(5), 1247-1268. https://doi.org/10.1007/s00382-011-1050-0 Larsen, J. A. (1971). Vegetational relationships with air mass frequencies: boreal forest and tundra. Arctic: 177-194. https://www.jstor.org/stable/40507837 Lattaud, J., et al. (2018). A Comparison of Late Quaternary Organic Proxy-Based Paleotemperature Records of the Central Sea of Okhotsk. Paleoceanogr Paleoclimatol 33(7): 732-744. https://doi.org/10.1029/2018PA003388 Lattaud, J., et al. (2019). A multiproxy study of past environmental changes in the Sea of Okhotsk during the last 1.5 Ma. Organic Geochemistry 132: 50-61. https://doi.org/10.1016/j.orggeochem.2019.04.003 Lisiecki, L. E. and M. E. Raymo (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(1). https://doi.org/-10.1029/2004PA001071 Liu, Y.-J., et al. (2006). Mineralogical and geochemical changes in the sediments of the Okhotsk Sea during deglacial periods in the past 500 kyrs. Global and Planetary Change 53(1-2): 47-57. https://doi.org/10.1016/j.gloplacha.-2006.01.007 Lo, L., et al. (2018). Precession and atmospheric CO2 modulated variability of sea ice in the central Okhotsk Sea since 130,000 years ago. Earth and Planetary Science Letters 488: 36-45. https://doi.org/10.1016/j.epsl.2018.02.005 Martin, B. and Y. R. Thorstenson (1988). Stable carbon isotope composition (δ13C), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 hybrid. Plant Physiology 88(1): 213-217. https://doi.org/10.1104/pp.88.1.213 Martin, S., et al. (1998). The production of ice and dense shelf water in the Okhotsk Sea polynyas. Journal of Geophysical Research: Oceans 103(C12): 27771-27782. https://doi.org/10.1029/98JC02242 Melles, M., et al. (2012). 2.8 million years of Arctic climate change from Lake El'gygytgyn, NE Russia. Science 337(6092): 315-320. https://doi.org/-10.1126/science.1222135 Naish, T., et al. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458(7236): 322-328. https://doi.org/10.1038/nature07867 Nemani, R. R., et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625), 1560-1563. https://doi. org/ 10.1126/science.1082750 Nishioka, J., et al. (2021). A review: iron and nutrient supply in the subarctic Pacific and its impact on phytoplankton production. Journal of Oceanography 77(4): 561-587. https://doi.org/10.1007/s10872-021-00606-5 Ols, C., et al. (2019). Spatiotemporal variation in the relationship between boreal forest productivity proxies and climate data. Dendrochronologia 58. https://doi.org/-10.1016/j.dendro.2019.125648 Parkinson, C. L. (1987). Arctic sea ice, 1973-1976: Satellite passive-microwave observations, Scientific and Technical Information Branch, National Aeronautics and Space Administration. Raymo, M., et al. (1997). The mid‐Pleistocene climate transition: A deep sea carbon isotopic perspective. Paleoceanography 12(4): 546-559. https://doi.org/10.1029-/97PA01019 Reimer, P. J., et al. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4), 1869-1887. https://doi.org/10.2458-/azu_js_rc.55.16947 Scherer, R., et al. (2008). Antarctic records of precession‐paced insolation‐driven warming during early Pleistocene Marine Isotope Stage 31. Geophysical Research Letters 35(3). https://doi.org/10.1029/2007GL032254 Schmidt, G. A. (2010). Enhancing the relevance of palaeoclimate model/data comparisons for assessments of future climate change. Journal of Quaternary Science, 25(1), 79-87. https://doi.org/10.1002/jqs.1314 Schoepfer, S. D., et al. (2015). Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Science Reviews 149: 23-52. https://doi.org/10.1016/j.earscirev.2014.08.017 Schwarzbauer, J. and B. Jovančićević (2016). From biomolecules to chemofossils, Springer International Publishing. ISBN : 978-3-319-27241-2 Seki, O., et al. (2004). Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr. Paleoceanography 19(1). https://doi.org/10.1029/2002PA000808 Shackleton, N. (1967). Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215(5096): 15-17. https://doi.org/10.1038/215015a0 Sigman, D. M., & Hain, M. P. (2012). The biological productivity of the ocean. Nature Education Knowledge, 3(10), 21. Slayback, D. A., et al. (2003). Northern hemisphere photosynthetic trends 1982–99. Global Change Biology, 9(1), 1-15. https://doi.org/10.1046/j.1365-2486.2003.00507.x Summons, R. E., et al. (2006). Steroids, triterpenoids and molecular oxygen. Philosophical Transactions of the Royal Society B: Biological Sciences 361(1470): 951-968. https://doi.org/10.1098/rstb.2006.1837 Talley, L. D. (1991). An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific. Deep Sea Research Part A. Oceanographic Research Papers 38: S171-S190. https://doi.org/10.1016/S0198-0149(12)80009-4 Takahashi, K., et al. (2000). Long-term biogenic particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990–1995. Deep Sea Research Part I: Oceanographic Research Papers, 47(9), 1723-1759. https://doi.org/-10.1016/S0967-0637(00)00002-9 Ternois, Y., et al. (2001). A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years. Geochimica et Cosmochimica Acta 65(5): 791-802. https://doi.org/10.1016/S0016-7037(00)00598-6 Tremblay, J.-É. and J. Gagnon (2009). The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change. Influence of climate change on the changing arctic and sub-arctic conditions, Springer: 73-93. ISBN: 978-1-4020-9458-3 Tyson, R. (2006). Introduction to Organic Geochemistry, Oxford: Blackwell Publishing. ISBN 0 632 06504 4. Geological Magazine 143(2): 250-250. https://doi.org/10.1017/S0016756806222052 Villa, G., et al. (2008). A Pleistocene warming event at 1 Ma in Prydz Bay, East Antarctica: evidence from ODP site 1165. Palaeogeography, Palaeoclimatology, Palaeoecology 260(1-2): 230-244. https://doi.org/10.1016/j.palaeo.2007.08.017 Volk, T., & Hoffert, M. I. (1985). Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean‐driven atmospheric CO2 changes. The carbon cycle and atmospheric CO2: natural variations Archean to present, 32, 99-110. https://doi.org/10.1029/GM032p0099 Volkman, J. K. (1986). A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry 9(2): 83-99. https://doi.org/10.1016/0146-6380(86)90089-6 Volkman, J. K., & Hallegraeff, G. M. (1988). Lipids in marine diatoms of the genus Thalassiosira: Predominance of 24-methylenecholesterol. Phytochemistry, 27(5), 1389-1394. https://doi.org/10.1016/0031-9422(88)80200-0 Volkman, J. K. (2005). Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Organic Geochemistry 36(2): 139-159. https://doi.org/10.1016/j.orggeochem.2004.06.013 Wang, A., et al. (2021). Orbital and Millennial Variations in Sea Ice in the Southwestern Okhotsk Sea Since the Last Interglacial Period and Their Implications. Frontiers in Earth Science 9. https://doi.org/10.3389/-feart.2021.710797 Wang, Y., et al. (2021). Combining sterols with stable carbon isotope as indicators for assessing the organic matter sources and primary productivity evolution in the coastal areas of the East China Sea. Continental Shelf Research 223. https://doi.org/10.1016/j.csr.2021.104446 Wong, C. (1995). The opal pump and subarctic carbon removal. Global Fluxes of Carbon and Its Related Substances in the Coastal Sea-Ocean-Atmosphere System, Proc. 1994 Zhao, W., et al. (2022). Quaternary environmental changes in central Chukotka (NE Russia) inferred from the Lake El'gygytgyn pollen records. Journal of Quaternary Science. https://doi.org/10.1002/jqs.3408 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86065 | - |
dc.description.abstract | 生物生產力受氣候與環境因子控制,並在氣候系統回饋機制和全球碳循環中扮演重要角色。本研究利用鄂霍次克海中部的海洋岩芯材料MD01-2414 (53◦11.77′ N, 149◦34.80′ E),透過氣相層析質譜儀分析沉積物中六種常見的有機固醇類濃度 (β-sitosterol, stigmasterol, campesterol, dinosterol, brassicasterol and 24-methylene cholesterol),作為代用指標重建120萬至60萬年來鄂霍次克海以及鄰近東北部西伯利亞地區陸地生產力。 結果顯示陸相與海相來源固醇類皆有明顯的冰期/間冰期週期變化,在間冰期濃度較高。本文首先探討影響沉積物中固醇類濃度的因素,藉由陸相/海相來源比例變化以及固醇類濃度隨深度遞增趨勢,顯示在本研究地點,生物生產力變化的影響大於有機質保存以及陸地沉積物傳輸量。而後本文利用固醇類通量作為生產力指標討論氣候事件:根據固醇類以及前人研究之鄰近地區海表溫與海冰紀錄,西北太平洋地區經歷較為寒冷的間冰期MIS 23且此寒冷狀態延續至MIS 22。而在MIS 31-32時期,固醇類以及前人研究之鄰近地區海表溫、東北西伯利亞陸地湖泊紀錄,顯示此區域於MIS 32初期開始升溫,並於MIS 32末期達最溫暖狀態,此變化早於前人研究之超級間冰期MIS 31紀錄,也領先過往推測可能為控制因素的南、北半球日照量峰值。 本文探討沉積物中固醇類化合物作為生物生產力代用指標之可行性,並藉以重建西北太平洋和東北西伯利亞環境,顯示此區域陸地與海洋生產力於間冰期時增加,並在900 ka左右經歷寒冷事件以及在MIS 32經歷較為溫暖的冰期。 | zh_TW |
dc.description.abstract | Biological productivity, controlled by climate and environmental factors, plays an important role in climate feedback mechanisms and the global carbon cycle. In order to provide more data for discussion of the interactions, in this study, six sterol compounds (β-sitosterol, stigmasterol, campesterol, dinosterol, brassicasterol and 24-methylene cholesterol) from the core MD01-2414 (53◦11.77′ N, 149◦34.80′ E) from the central Okhotsk Sea were measured for 1200-60 ka by using gas chromatography-mass spectrometer. These sterols derived from different environments were used as paleoproductivity proxies to reconstruct productivity in the central Okhotsk Sea and the northeast Siberia. Our results show that all the sterols generally follow the global glacial/interglacial cycles during the 1200-60 ka, with higher values in interglacial and lower ones in glacial periods. Ba/Ti and C/N ratio indicating marine versus terrestrial sources change and the increasing trend in all the sterol concentrations show that productivity is the major control on sedimentary sterols rather than transportation and preservation in this study site, confirming the representativeness of sterols as proxies of biological productivity. According to sterol fluxes in this study, sea surface temperature records from the northwest Pacific and sea ice proxy from the Bering Sea, a “failed” interglacial, MIS 23, was observed and the cold condition remained in MIS 22. The sterol data compiled with sea surface temperature records of the Okhotsk Sea and northwest Pacific, and pollen, temperature and sedimentary faces of sediments from Lake El’gygytgyn located in the Far East Arctic region show a warming event at the onset of MIS 32 and reach the warmest at late MIS 32, which is prior to other records of the “super-interglacial”, MIS 31, and to the maximum value of boreal summer insolation and austral summer insolation. In sum, transportation of terrestrial detritus and preservation of organic matter were considered in order to confirm the feasibility of sedimentary sterol as a productivity proxy. The results of sterols indicate higher marine and land productivity in interglacials in northwest Pacific and northeast Siberia. A cooling events around 900 ka and a warming trend in the glacial period, MIS 32, were found in the sterol data and also in records from previous studies. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:35:12Z (GMT). No. of bitstreams: 1 U0001-1309202215310800.pdf: 3680344 bytes, checksum: c6ca333e4866afa2c3a77a6d98914dcd (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | Contents Acknowledgements (In Chinese) ………..………..……..………………..………..… 1 Abstract (in Chinese) ………..………..……..………………..………..…………..… 3 Abstract ………..………..……..………………..………..…………..……………….. 4 Contents ………..………..……..………………..………..…………..…………6 Figures ………..………..……..………………..………..…………..……………8 Tables ………..………..……..………………..………..…………..………………9 1 Introduction ………..……..………………..………..…………..………..10 1.1. Biological productivity and its interaction with the Earth’s climate system ……..…………..……………..…………..……………..…………...….. 10 1.2. The aim of this study ………..……..………………..………..……….13 2 Literature Review ………..……..………………..………..…………..…16 2.1. Sterol biomarker ………..……..………………..………..…………...…16 2.2. The Okhotsk Sea ………..……..………………..………..…………....……18 2.3. Paleoclimate events ………..……..………………..………..…………..…21 3 Material and Methods ………..……..………………..………..…………..……24 3.1. Sediment core MD01-2414 ………..……..………………..………..………24 3.1.1. General description ………..……..………………..………..……24 3.1.2. Age model ………..……..………………..………..…………...…24 3.2. Method ………..……..………………..………..…………..…………25 3.2.1. Elemental carbon and nitrogen analysis ………..……..…………25 3.2.2. Sample preparation for sterol analysis ………..……..……………26 3.2.3. GC-MS ………..……..………………..………..…………..……29 3.2.4. Quantitative analysis of sterols ………..……..…………………32 4 Results ………..……..………………..………..…………..…………………..…34 4.1. Elemental analysis ………..……..………………..………..…………..…34 4.2. Sterol analysis ………..……..………………..………..…………..…36 5 Discussion ………..……..………………..………..………..…………………….41 5.1. Factors controlling sedimentary sterols ……..…………..…………………41 5.2. An abrupt event during MIS 22-24 ……..…………..……………………45 5.3. Super interglacial MIS 31 in the Okhotsk Sea ……..…………..……………51 5.4. The constraints of sterol as a biomarker proxy ……..…………..…………58 6 Conclusions ………..……..………………..………..…………..………………60 References ………..……..………………..………..…………..…………………..…63 Appendix ………..……..………………..………..…………..……………………..…78 Figures Figure 2.1 Structure of sterols in this study ………..……..………………..……….…18 Figure 2.2 Bathymetry map of the Okhotsk Sea and the location of the sediment core ………..……..………………..………..…………..…………………….20 Figure 3.1 Structure of the internal standard ………..……..………………..…27 Figure 3.2 Schematic diagram of sample preparations for sterol analysis ……………29 Figure 3.3 The Extracted-ion chromatogram of six sterols ………………..…31 Figure 4.1 Elemental analysis data of MD01-2414 for the time interval 600-1200 ka ……35 Figure 4.2 Sterol concentration data of MD01-2414 for the time interval 600-1200 ka……38 Figure 4.3 Sterol flux data of MD01-2414 for the time interval 600-1200 ka………………39 Figure 4.4 The ratio of sterol to TOC flux of MD01-2414 for the time interval 600-1200 ka………..……..………………..………..…………..…………………….40 Figure 5.1 Proxy data of MD01-2414 indicating sources change and redox states of the sediments…..……..………………..………..…………..…………………….44 Figure 5.2 Bathymetry map of the location of sediment cores (MD01-2414, ODP site 882 and U1343) and the Lake El’gygytgyn …..……..………………..………..…………..……45 Figure 5.3 Proxy data for the time interval 800-1000 ka…..……..………………..…….48 Figure 5.4 The relationship between biomarker proxies and high-latitude insolation………50 Figure 5.5 Proxy data for the time interval 1025-1140 ka……………..…………….……54 Figure 5.6 Proxy and insolation data for the time interval 1020-1140 ka…………………57 Figure 5.7 Sterol correlations…..……..………………..………..…………..…………59 Tables Table 3.1 GC-MS settings of sterols…..……..………………..………..………..……31 Table 3.2 The Coefficient of determination of calibration curve……..………..……..33 | |
dc.language.iso | en | |
dc.title | 以有機固醇類作為古氣候代用指標重建中更新世變遷時期鄂霍次克海之氣候歷史 | zh_TW |
dc.title | Reconstructing productivity history across the Mid-Pleistocene Transition in the central Okhotsk Sea using sterol biomarker | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 施路易(Ludvig Löwemark),賀詩琳(Sze-Ling Ho) | |
dc.subject.keyword | 有機固醇類,鄂霍次克海,中更新世變遷,超級間冰期,生物生產力指標, | zh_TW |
dc.subject.keyword | Organic Geochemistry,Mid-Pleistocene Transition,Sterol biomarker,the Okhotsk Sea,Super-interglacial, | en |
dc.relation.page | 92 | |
dc.identifier.doi | 10.6342/NTU202203354 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
dc.date.embargo-lift | 2024-09-13 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1309202215310800.pdf | 3.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。