請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86043
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅弘岳(Hong-Yueh Lo) | |
dc.contributor.author | Tse-Ting Wu | en |
dc.contributor.author | 吳澤廷 | zh_TW |
dc.date.accessioned | 2023-03-19T23:34:11Z | - |
dc.date.copyright | 2022-09-26 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-16 | |
dc.identifier.citation | Assier-Rzadkieaicz, S., Heinrich, P., Sabatier, P. C., Savoye, B., & Bourillet, J. F. (2000). Numerical modelling of a landslide-generated tsunami: the 1979 Nice event. Pure and Applied Geophysics, 157(10), 1707-1727. Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Gálvez, M.A.,Sørensen, M., Abadie, S., Aguirre-Ayerbe, I., Aniel-Quiroga, I.,Babeyko, A., Baiguera, M., Basili, R., Belliazzi, S., Grezio, A., Johnson,K., Murphy, S., Paris, R., Rafliana, I., De Risi, R., Rossetto, T., Selva, J.,Taroni, M., Del Zoppo, M., Armigliato, A., Bureš, V., Cech, P., Cecioni,C., Christodoulides, P., Davies, G., Dias, F., Bayraktar, H.B., González,M., Gritsevich, M., Guillas, S., Harbitz, C.B., Kânoglu, U., Macías, ˇJ., Papadopoulos, G.A., Polet, J., Romano, F., Salamon, A., Scala, A.,Stepinac, M., Tappin, D.R., Thio, H.K., Tonini, R., Triantafyllou, I.,Ulrich, T., Varini, E., Volpe, M., Vyhmeister, E. (2021) Probabilistic tsunami hazard and risk analysis: A review of research gaps. Frontier in Earth Science. 9, 628772. Chen, Q. (2006). Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132(2), 220-230. Chen, Q., Dalrymple, R. A., Kirby, J. T., Kennedy, A. B., & Haller, M. C. (1999). Boussinesq modeling of a rip current system. Journal of Geophysical Research: Oceans, 104(C9), 20617-20637. Enet, F., & Grilli, S. T. (2007). Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(6), 442-454. FUNWAVE-TVD, https://fengyanshi.github.io/build/html/index.html GEBCO, https://www.gebco.net/ Geist, E. L. (2016). Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models. Geophysical Journal International, 204(2), 878-891. Glimsdal, S., Pedersen, G. K., Harbitz, C. B., & Løvholt, F. (2013). Dispersion of tsunamis: does it really matter?. Natural Hazards and Earth System Sciences, 13(6), 1507-1526. González, F. I., Satake, K., Boss, E. F., & Mofjeld, H. O. (1995). Edge wave and non-trapped modes of the 25 April 1992 Cape Mendocino tsunami. Pure and Applied Geophysics., 144, 409–426, 1995. Grilli, S. T., & Watts, P. (2005). Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6), 283-297. Grilli, S. T., Shelby, M., Kimmoun, O., Dupont, G., Nicolsky, D., Ma, G., Kirby, J. T., & Shi, F. (2017). Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast. Natural Hazards, 86(1), 353-391. Harbitz, C. B., Løvholt, F., & Bungum, H. (2014). Submarine landslide tsunamis: how extreme and how likely?. Natural Hazards, 72(3), 1341-1374. Harders, R., Ranero, C. R., Weinrebe, W., & Behrmann, J. H. (2011). Submarine slope failures along the convergent continental margin of the Middle America Trench. Geochemistry, Geophysics, Geosystems, 12(6). Hsu, S. K., Kuo, J., Chung-Liang, L., Ching-Hui, T., Doo, W. B., Ku, C. Y., & Sibuet, J. C. (2008). Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 7. Kirby, J. T., Wei, G., Chen, Q., Kennedy, A. B., & Dalrymple, R. A. (1998). FUNWAVE 1.0: fully nonlinear Boussinesq wave model-Documentation and user's manual. Research Report NO. CACR-98-06. Larsen, J., & Dancy, H. (1983). Open boundaries in short wave simulations—a new approach. Coastal Engineering, 7(3), 285-297. Lavelle, J. W., & Thacker, W. C. (2008). A pretty good sponge: Dealing with open boundaries in limited-area ocean models. Ocean Modelling, 20(3), 270-292. Lee, C. H., Lo, P. H. Y., Shi, H., & Huang, Z. (2022). Numerical Modeling of Generation of Landslide Tsunamis: A Review. Journal of Earthquake and Tsunami. Li, L., Switzer, A. D., Wang, Y., Weiss, R., Qiu, Q., Chan, C. H., & Tapponnier, P. (2015). What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast ?. Geophysical Research Letters, 42(20), 8498-8506. Liu, T. C., Wu, T. R., & Hsu, S. K. (2022). Historical tsunamis of Taiwan in the 18th century: the 1781 Jiateng Harbor flooding and 1782 tsunami event. Natural Hazards and Earth System Sciences, 22(8), 2517-2530. Lo, P. H., P. L.-F (2022) A new semi-analytical landslide tsunami generation model and its application to the 1998 Papua New Guinea tsunami(in review). Løvholt, F., Glimsdal, S., Harbitz, C. B., Horspool, N., Smebye, H., De Bono, A., & Nadim, F. (2014). Global tsunami hazard and exposure due to large co-seismic slip. International Journal of Disaster Risk Reduction, 10, 406-418. Løvholt, F., Schulten, I., Mosher, D., Harbitz, C., & Krastel, S. (2019). Modelling the 1929 Grand Banks slump and landslide tsunami. Geological Society, London, Special Publications, 477(1), 315-331. Lynett, P. J., Borrero, J. C., Liu, P. L.-F. and Synolakis, C. E. (2003) Field Survey and Numerical Simulations: A Review of the 1998 Papua New Guinea Tsunami, Pure and Applied Geophysics, 160, 2119-2146. Neetu, S., Suresh, I., Shankar, R., Nagarajan, B., Sharma, R., Shenoi, S. S. C., ... & Sundar, D. (2011). Trapped waves of the 27 November 1945 Makran tsunami: observations and numerical modeling. Natural Hazards, 59(3), 1609-1618. Nwogu, O. (1993). Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(6), 618-638. Okal, E. A., & Synolakis, C. E. (2004). Source discriminants for near-field tsunamis. Geophysical Journal International, 158(3), 899-912. Pelinovsky, E., & Poplavsky, A. (1996). Simplified model of tsunami generation by submarine landslides. Physics and Chemistry of The Earth, 21(1-2), 13-17. Röbke, B. R., & Vött, A. (2017). The tsunami phenomenon. Progress in Oceanography, 159, 296-322. Sabeti, R., & Heidarzadeh, M. (2021). Numerical Simulations of Tsunami Wave Generation by Submarine Landslides: Validation and Sensitivity Analysis to Landslide Parameters. ASCE. Shi, F., Kirby, J. T., & Tehranirad, B. (2012). Tsunami benchmark results for spherical coordinate version of FUNWAVE-TVD. Center for Applied Coastal Research, University of Delaware, Reshearch Report, CACR-12-02. Shi, F., Kirby, J.T., Tehranirad, B., Harris, J.C., Choi, Y.-K. and Malej, M. (2016). FUNWAVE-TVD, Fully nonlinear Boussinesq wave model with TVD solver, Documentation and User's manual (Version 3.0). Research Report NO. CACR-11-03, University of Delaware. Synolakis, C. E., Bardet, J. P., Borrero, J. C., Davies, H. L., Okal, E. A., Silver, E. A., Sweet, S., and Tappin, D. R.(2002): The slump origin of the 1998 Papua New Guinea tsunami. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 458(2020), 763-789. Takagi, H., Pratama, M. B., Kurobe, S., Esteban, M., Aránguiz, R., & Ke, B. (2019). Analysis of generation and arrival time of landslide tsunami to Palu City due to the 2018 Sulawesi earthquake. Landslides, 16(5), 983-991. Tappin, D. R., Watts , P. and Grilli, S. T. (2008): The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Nature Hazards and Earth System Sciences , 8(2), 243–266. Ward, S. N. (2001). Landslide tsunami. Journal of Geophysical Research: Solid Earth, 106(B6), 11201-11215. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences, 3(5), 391-402. Watts, P., Grilli, S. T., Tappin, D. R., & Fryer, G. J. (2005). Tsunami generation by submarine mass failure. II: Predictive equations and case studies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6), 298-310. Wu, T. R., & Huang, H. C. (2009). Modeling tsunami hazards from Manila trench to Taiwan. Journal of Asian Earth Sciences, 36(1), 21-28. Wu, T. R., Chen, P. F., Tsai, W. T., & Chen, G. Y. (2008). Numerical study on tsunamis excited by 2006 Pingtung earthquake doublet. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 705-715. 吳佳瑜(2008) : 「台灣南部海域海底山崩分布與特徵」,國立台灣大學海洋研究所碩士論文,台北。 呂佳柔(2015) : 「台灣西南海域高屏斜坡之海底崩移研究」,國立中央大學地球科學系碩士論文,桃園。 陳松春、蔡慶輝、許樹坤、王詠絢、葉一慶、劉家瑄 (2017) : 「臺灣西南海域泥貫入體抬升及天然氣水合物解離所引發的大型海底山崩」,鑛冶,頁33-46。 陳國瑛 (1830) 台灣采訪冊,清代臺灣方志彙刊。 羅弘岳(2021) : 「山崩海嘯半解析解生成模型及其於 1998年巴布亞紐幾內亞海嘯之應用」,第 43 屆海洋工程研討會論文集,桃園。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86043 | - |
dc.description.abstract | 海底山崩海嘯指的是一種因為海底山崩所造成的海嘯,自從1998年巴布亞紐幾內亞(PNG)海嘯事件後,海底山崩海嘯逐漸受到學者們的重視,但海底山崩海嘯相較於一般常見的地震型海嘯不確定很高,且在參數的取得上並不容易,需要詳細的地質調查才可以取得相關的參數,因此海底山崩海嘯研究在所有型態的海嘯中可以說是最艱難的一個。 本研究利用山崩海嘯半解析解加上FUNWAVE-TVD來進行有關台灣西南沿海山崩海嘯的模擬,首先透過1998年PNG山崩海嘯來驗證模型的可行性,然後利用台灣西南海域的相關海底山崩數據來進行山崩型海嘯的情境模擬,並利用最大波高圖及測站時序圖來解釋模擬的結果。 在台灣西南海域山崩海嘯模擬結果中,我們發現了台灣西南海域的海底地形會導致邊緣波產生,且邊緣波會持續影響約一個小時的時間,會讓台灣西南沿海受到海嘯影響的時間拉長。最後,本研究亦提供了一個假設海底山崩參數的方法,希望這個方法可以提供往後研究山崩型海嘯的相關人員一個選擇。 | zh_TW |
dc.description.abstract | Landslide tsunami is the tsunami that generating by landslide. After PNG (Papua New Guinea) tsunami event on 1998, academic has focused on landslide tsunami. But landslide tsunami is more uncertain than seismic tsunami, and it is very difficult to get the parameters of landslide. If we want to get accurate parameters, we should conduct very detailed research on geological oceanography. In summary, Landslide tsunami is the most difficult research of all kind tsunami. In this study, we use semi-analytical landslide tsunami generation model and FUNWAVE-TVD to simulate landside tsunami in southwestern coast of Taiwan. First, we validated feasibility of model by the scenarios for PNG tsunami event on 1998, and used submarine landslide data of southwestern coast of Taiwan to simulate propagation of landslide tsunami, then used maximum wave heights map and gauge record to analyze result of simulation. The results of landslide tsunami in southwestern coast of Taiwan find submarine topography can generate edge wave, and edge wave would affect southwest coast of Taiwan for one hour. And edge wave will extend time of tsunami impact in southwest coast of Taiwan. Finally, we provided a method to assume submarine landslide parameters in this study, and we hope this method can give person a choose for researching on landslide tsunami. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:34:11Z (GMT). No. of bitstreams: 1 U0001-1309202218313500.pdf: 7883859 bytes, checksum: 9f849dbc1ea5cfa369a4ca5470a32812 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 i 謝誌 ii 摘要 iii ABSTRACT iv 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 海底山崩 2 1.3 山崩海嘯 3 1.4 本文架構 6 第二章 模式介紹與海底山崩參數假設 7 2.1 FUNWAVE-TVD 7 2.1.1 控制方程式(Governing Equations) 8 2.1.2 球座標控制方程式(Governing equation in spherical coordinate) 9 2.1.3 邊界條件(Boundary Condition) 9 2.2 海底山崩海嘯半解析解 10 2.2.1 自由液面與速度 11 2.2.2 造波過程 12 2.3 山崩參數之假設 13 2.3.1 厚度、長度、寬度、山崩位置 13 2.3.2 山崩地初始水深 14 2.3.3 波浪淺化角度 14 2.3.4 山崩滑移方向 15 2.3.5 海嘯關注方位角 15 2.3.6 初始加速度、最大速度 15 第三章 模型測試 19 3.1 地形資料 20 3.2 初始條件及邊界條件 22 3.2.1 初始波形及初始速度 23 3.2.2 邊界條件 27 3.3 模擬結果 29 3.3.1 收斂性測試及模擬網格之選擇 29 3.3.2 海嘯之傳遞 30 3.3.3 測站之自由液面變化 34 3.4 結果與討論 37 3.4.1 等深線的選擇 37 3.4.2 最大波高之分布 39 3.4.3 Celeris與FUNWAVE-TVD模型之異同 42 第四章 台灣西南沿海山崩海嘯之模擬 45 4.1 前人案例研究 45 4.2 海底山崩數據之假設 46 4.2.1 山崩滑移方向 46 4.2.2 長度,寬度,厚度,海底山崩位置 48 4.2.3 波浪溯升角度 50 4.2.4 海嘯關注角度 51 4.2.5 初始加速度及最大速度 51 4.3 研究範圍、初始條件與邊界條件 52 4.3.1 研究範圍 52 4.3.2 初始波形及初始速度 54 4.3.3 邊界條件 57 4.4 模擬結果 59 4.4.1 收斂性測試 59 4.4.2 海嘯傳播 64 4.4.3 等深線選擇 66 4.4.4 測站波形 69 4.4.5 最大波高分布 71 4.5 與Li et al. (2015)模擬之比較 72 4.5.1 滑移方位角敏感性測試 74 4.5.2 最大速度敏感性測試 81 4.5.3 初始加速度敏感性測試 85 4.6 結果與討論 87 4.6.1 海嘯對台灣沿岸的影響 87 4.6.2 邊緣波(edge wave) 88 第五章 結論與未來展望 93 5.1 結論 93 5.2 未來展望 94 參考文獻 95 | |
dc.language.iso | zh-TW | |
dc.title | 台灣西南海域山崩海嘯之數值模擬 | zh_TW |
dc.title | Numerical Simulation of Landside Tsunamis in Southwestern Coast of Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳祚任(Tso-Ren Wu),戴璽恆(Hsi-Heng Dai),李政賢(Cheng-Hsien Lee) | |
dc.subject.keyword | 海底山崩,山崩型海嘯,西南海域,海底山崩海嘯半解析解,FUNWAVE-TVD, | zh_TW |
dc.subject.keyword | submarine landslide,landslide tsunami,offshore region of southwest Taiwan,semi-analytical landslide tsunami generation model,FUNWAVE-TVD, | en |
dc.relation.page | 100 | |
dc.identifier.doi | 10.6342/NTU202203366 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-26 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1309202218313500.pdf | 7.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。