請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86039完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊穎堅(Yiing-Jang Yang) | |
| dc.contributor.author | Yu-Cheng Hsiao | en |
| dc.contributor.author | 蕭宇呈 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:34:01Z | - |
| dc.date.copyright | 2022-10-07 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-16 | |
| dc.identifier.citation | Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81,639–640. https://doi.org/10.1002/qj.49708135027 D'Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of hurricane Frances. Geophys. Res. Lett., 34, L15609. https://doi.org/10.1029/2007GL030160 Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., & Hersbach, H. , 2013: On the Exchange of Momentum over the Open Ocean. J. Phys. Oceanogr., 43, 1589-1610. https://doi.org/10.1175/JPO-D-12-0173.1 Elsberry, R., T. Fraim, and R. Trapnell Jr., 1976: A mixed layer model of the oceanic thermal response to hurricanes. J. Geophy. Res., 81, 1153–1162. https://doi.org/10.1029/JC081i006p01153 Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S.Young, 1996: Bulk parameterization of air–sea fluxes for TOGA COARE. J. Geophys. Res., 101, 3747–3764. https://doi.org/10.1029/95JC03205 Fairall, C., E. F. Bradley, J. E. Hare, A. A. Grachev and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571-591. https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2 Hu, K. and Qin Chen, 2011: Directional spectra of hurricane-generated waves in the Gulf of Mexico. Geophys. Res., 38, L19608. https://doi.org/10.1029/2011GL049145 Kashima, H., K. Hirayama, K. Haruo, T. Hiraishi and K. Nakai, 2008: Consideration of design wave for port construction according recent observation. OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean, pp. 1-6. http://doi.org/ 10.1109/OCEANSKOBE.2008.4530966 Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atoms. Sci., 36, 1722-1735. https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2 Mrvaljevic, R. K., et al., 2013: Observations of the cold wake of Typhoon Fanapi (2010). Geophys. Res. Lett., 40, 316–321. https://doi.org/10.1029/2012GL054282 Oost, W. A., G. J. Komen, C. M. J. Jacobs and C. V. Oort , 2002: New evidence for a relation between wind stress and wave age from the measurement during ASGAMAGE. Bound.-Layer Meteor, 103, 409-438. https://doi.org/10.1023/A:1014913624535 Potter, H., C. O. Collins III, W. M. Drennan, and H. C. Graber, 2015: Observations of wind stress direction during Typhoon Chaba (2010). Geophys. Ret. Lett., 42, 9898-9905. https://doi.org/10.1002/2015GL065173 Potter, H., W. M. Drennan, and H. C. Graber, 2017: Upper ocean cooling and air-sea fluxes under typhoons: A case Study. J. Geophys. Res.: Ocean, 122, 7237-7252. https://doi.org/10.1002/2017JC012954 Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153-175. https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2 Price, J. F., R.A.Weller, and R.Pinkel, 1986: Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411-8427. https://doi.org/10.1029/JC091iC07p08411 Smith, S. D. ,1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15467-15472. https://doi.org/10.1029/JC093iC12p15467 Sun, B., L.Yu, and R.A.Weller, 2003: Comparisons of surface meteorology and turbulent heat fluxes over the Atlantic: NWP model analyses versus moored buoy observations. J. Climate, 16, 679–695. https://doi.org/10.1175/1520-0442(2003)016<0679:COSMAT>2.0.CO;2 Taylor, P. K. and M. J. Yelland , 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572-590. https://doi.org/10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2 Wright, C. W. E. J. Walsh, D. Vandemark, W. B. Krabill, A. W. Garcia, S. H. Houston, M. D. Powell, P. G. Black, and F. D. Marks, 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 2472–2488. https://doi.org/10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2 Yang, Y. J., M. H. Chang, C. Y. Hsieh, H. I. Chang, S. Jan and C. L. Wei , 2019: The role of enhanced velocity shears in rapid ocean cooling during Super Typhoon Nepartak 2016. Nature Communications, 10, 1627. https://doi.org/10.1038/s41467-019-09574-3 Yu, L., X.Jin, and R.A.Weller, 2008: Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01, 64pp. Woods Hole. Massachusetts. https://rda.ucar.edu/datasets/ds260.1/docs/OAFlux_TechReport_3rd_release.pdf Yu, L., R. A. Weller, and B. Sun, 2004: Mean and variability of the WHOI daily latent and sensible heat fluxes at in-situ flux measurement sites in the Atlantic Ocean. J. Climate, 17, 2096–2118. https://doi.org/10.1175/1520-0442(2004)017<2096:MAVOTW>2.0.CO;2 Zhou, F., Rongwang Zhang, Rui Shi, Yunkai He, Ju Chen, Qiang Xie, Dongxiao Wang, 2018: Evaluation of OAFlux datasets based on in-situ air-sea flux tower observations over Yongxing Island in 2016. Atmos. Meas. Tech., 11, 6091-6106. https://doi.org/10.5194/amt-11-6091-2018 臺大海氣象即時傳輸浮標網 (2016)。檢自https://po.oc.ntu.edu.tw (Oct. 21, 2021) 謝佳穎(2017年8月)。浮標觀測颱風中心附近海域的海氣象變化之研究。海洋研究所碩士論文,國立臺灣大學理學院。10.6342/NTU201703398 楊芊奕(2022年5月)。熱帶氣旋所引起的上層海洋升溫。海洋研究所碩士論文,國立臺灣大學理學院。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86039 | - |
| dc.description.abstract | 西北太平洋為颱風產生的熱點地區,每年有超過5個颱風登陸東亞沿岸地區,對其造成嚴重破壞。而在颱風的生命週期中,所經之地的大氣與海表環境皆有大幅度變化,若能連續觀察極端天氣下的海氣象變化,對於日後改善颱風預報將是一大幫助。 本研究利用國立臺灣大學海洋研究所於鵝鑾鼻東南方海域約375與175公里處佈放的海氣象即時傳輸浮標所收集到的氣象、波浪與海表溫資料,探討2018至2021年間共8個颱風中所觀測到的風浪變化,並搭配Coupled Ocean Atmosphere Response Experiment v3.6演算法套件進行海表熱通量估計,並與衛星遙測產品之資料討論颱風期間的潛熱通量與可感熱通量變化。而8個颱風名稱分別為2018年的山竹(Mangkhut);2019年的丹娜絲(Danas)、利奇馬(Lekima)、白鹿(Bailu)、玲玲(Lingling)、米塔(Mitag);2020年的閃電(Atsani);2021年的璨樹(Chanthu)。 經過分析後的結果發現,在颱風影響期間的風浪變化與浮標和颱風中心的相對位置變化有較高的相關性,其中包含浮標位於颱風中心之左右側以及最近相對距離,除了會影響到浪高的成長幅度,風向與浪向開始轉向的時間差異也有所不同,位於颱風中心右側,風向與浪向開始轉向的時間差約為0至3小時,而位於颱風中心左側,風向與浪向開始轉向的時間差約為6至9小時。另外,海表熱通量在颱風影響期間主要受到氣溫與海表溫差所影響,而在一些個案中可看到海表溫降是受到大氣從海洋獲取能量所致,不過降溫的幅度也與颱風本身結構以及大氣比濕有關。除此之外,與衛星資料推估的潛熱通量與可感熱通量進行比對後,可了解到因資料變化的掌握度與時間間隔的不同,觀測資料更能準確觀察短時間尺度內的趨勢變化。 | zh_TW |
| dc.description.abstract | The Western North Pacific Ocean is a hotspot area for generating tropical cyclones, also known as typhoons. Annually, over five typhoons make landfall on the coastal regions of East Asia, which causes serious damage. To better understand the variations of air-sea change under those extreme weather conditions, this study uses the in-situ observation data, including meteorological, wave, and sea surface temperature collected from two air/sea-observing buoys from the southernmost of Taiwan, about 375 km and 175 km, respectively, deployed by the Institute of Oceanography of National Taiwan University (NTU). From 2018 to 2021, NTU buoys recorded eight typhoons: Mangkhut, Danas, Lekima, Bailu, Lingling, Mitag, Atsani, and Chanthu. In addition, the Coupled Ocean Atmosphere Response Experiment algorithm v3.6 is used to estimate the latent and sensible heat flux, and the variation of heat flux is discussed with the satellite product. The meteorological and wave data showed that the wind and wave variations during typhoons could be related to the relative position between buoys and the typhoon center. Suppose the buoy is on the right-hand side of the typhoon center. In that case, the time lag between the wind and wave direction starting to turn is about 0 to 3 hours, while on the left-hand side of the typhoon center, the time lag between the wind and wave direction starting to turn is about 6 to 9 hours. Those effects would also affect the growth rate of the significant wave height. Additionally, the trend of the surface heat fluxes in extreme weather is mainly affected by the air and sea surface temperature difference. In some cases, it can be seen that the heat flux change causes the sea surface temperature to cool, but the magnitude of cooling is also related to the typhoon’s structure and the moisture in the air. Besides, by comparing the heat flux estimated by satellite data, the measured data is more suitable for observing the trend on a short time scale than the satellite data. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:34:01Z (GMT). No. of bitstreams: 1 U0001-1508202215162000.pdf: 21404841 bytes, checksum: 1a908d4bff0504dcf2dccc87fa6c0252 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 中文摘要 III ABSTRACT IV 目錄 V 圖目錄 VIII 表目錄 XIII 符號表 XIV 第一章 緒論 1 1.1、研究背景回顧 1 1.2、研究動機與目的 2 第二章 資料介紹 3 2.1、海氣象浮標資料介紹 3 2.2、颱風資訊來源 15 2.3、經過浮標之颱風介紹 17 2.3.1、2018年 17 2.3.2、2019年 18 2.3.3、2020年 21 2.3.4、2021年 22 2.4、熱通量資料 23 第三章 分析方法介紹 31 3.1、颱風參考座標軸之正規化 31 3.2、海表熱通量分析 34 第四章 颱風個案探討 39 4.1、颱風影響期間之風浪變化 39 4.1.1、2018年 40 4.1.1.1、山竹颱風 40 4.1.2、2019年 46 4.1.2.1、丹娜絲颱風 46 4.1.2.2、利奇馬颱風 52 4.1.2.3、白鹿颱風 58 4.1.2.4、玲玲颱風 64 4.1.2.5、米塔颱風 67 4.1.3、2020年 70 4.1.3.1、閃電颱風 70 4.1.4、2021年 76 4.1.4.1、璨樹颱風 76 4.2、颱風影響期間之海表熱通量變化 82 4.2.1、2018年 83 4.2.1.1、山竹颱風 (NTU1) 83 4.2.1.2、山竹颱風 (NTU2) 84 4.2.2、2019年 89 4.2.2.1、丹娜絲颱風 (NTU1) 89 4.2.2.2、丹娜絲颱風 (NTU2) 90 4.2.2.3、利奇馬颱風 (NTU1) 95 4.2.2.4、利奇馬颱風 (NTU2) 96 4.2.2.5、白鹿颱風 (NTU1) 101 4.2.2.6、白鹿颱風 (NTU2) 102 4.2.2.7、玲玲颱風 (NTU1) 107 4.2.2.8、米塔颱風 (NTU2) 110 4.2.3、2020年 113 4.2.3.1、閃電颱風 (NTU1) 113 4.2.3.2、閃電颱風 (NTU2) 114 4.2.4、2021年 119 4.2.4.1、璨樹颱風 (NTU1) 119 4.2.4.2、璨樹颱風 (NTU2) 120 4.3、估算海表熱通量差異(實測資料與衛星產品) 125 第五章 討論與總結 135 5.1、颱風期間風浪變化 135 5.2、颱風期間海表熱通量變化 142 5.3、總結 147 參考文獻 148 | |
| dc.language.iso | zh-TW | |
| dc.subject | 海表熱通量 | zh_TW |
| dc.subject | 風浪變化 | zh_TW |
| dc.subject | 海氣象浮標 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | Wind and wave variation | en |
| dc.subject | Typhoon | en |
| dc.subject | Metocean buoy | en |
| dc.subject | Surface heat flux | en |
| dc.title | 探討浮標觀測颱風中心附近海域的風、波浪與海表熱通量變化 | zh_TW |
| dc.title | Study of Metocean Buoys Observed Wind, Wave, and Surface Heat Flux Variations Within Typhoon | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0003-0843-3153 | |
| dc.contributor.oralexamcommittee | 詹森(Sen Jan),張明輝(Ming-Huei Chang),滕春慈(Chun-Ci Teng) | |
| dc.subject.keyword | 海氣象浮標,颱風,風浪變化,海表熱通量, | zh_TW |
| dc.subject.keyword | Metocean buoy,Typhoon,Wind and wave variation,Surface heat flux, | en |
| dc.relation.page | 152 | |
| dc.identifier.doi | 10.6342/NTU202202410 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-30 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1508202215162000.pdf | 20.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
