Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86017
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭舒婷(Su-Ting Cheng)
dc.contributor.authorHung-En Lien
dc.contributor.author李弘恩zh_TW
dc.date.accessioned2023-03-19T23:33:02Z-
dc.date.copyright2022-10-05
dc.date.issued2022
dc.date.submitted2022-09-16
dc.identifier.citationAikawa, M., Hiraki, T., & Tamaki, M. (2006). Comparative field study on precipitation, throughfall, stemflow, fog water, and atmospheric aerosol and gases at urban and rural sites in Japan. Science of the Total Environment, 366(1), 275–285. https://doi.org/10.1016/j.scitotenv.2005.06.027 Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and Drainage Paper - Crop Evapotranspiration. Irrigation and Drainage, 300(56), 300. http://www.kimberly.uidaho.edu/water/fao56/fao56.pdf Almeida, A. C., Sands, P. J., Bruce, J., Siggins, A. W., Leriche, A., Battaglia, M., & Batista, T. R. (2009). Use of a spatial process-based model to quantify forest plantation productivity and water use efficiency under climate change scenarios. 18th World IMACS Congress and MODSIM 2009 - International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings, July, 1816–1822. Almeida, A. C., Siggins, A., Batista, T. R., Beadle, C., Fonseca, S., & Loos, R. (2010). Mapping the effect of spatial and temporal variation in climate and soils on Eucalyptus plantation production with 3-PG, a process-based growth model. Forest Ecology and Management, 259(9), 1730–1740. https://doi.org/10.1016/j.foreco.2009.10.008 Battaglia, M., & Sands, P. J. (1998). Process-based forest productivity models and their application in forest management. Forest Ecology and Management, 102(1), 13–32. https://doi.org/10.1016/S0378-1127(97)00112-6 Bi, H. (2004). Stochastic frontier analysis of a classic self-thinning experiment. Austral Ecology, 29(4), 408–417. https://doi.org/10.1111/j.1442-9993.2004.01379.x Caldeira, D. R. M., Alvares, C. A., Campoe, O. C., Hakamada, R. E., Guerrini, I. A., Cegatta, Í. R., & Stape, J. L. (2020). Multisite evaluation of the 3-PG model for the highest phenotypic plasticity Eucalyptus clone in Brazil. Forest Ecology and Management, 462(February), 117989. https://doi.org/10.1016/j.foreco.2020.117989 Castellví, F., Perez, P. J., Villar, J. M., & Rosell, J. I. (1996). Analysis of methods for estimating vapor pressure deficits and relative humidity. Agricultural and Forest Meteorology, 82(1–4), 29–45. https://doi.org/10.1016/0168-1923(96)02343-X Chiang, W., Wang, Y.-N., Tsai, M.-J., & Cheng, C.-P. (2010). Study on Growth of Cryptomeria japonica D. Don at the Nishikawa Plot of NTUEF Xitou Tract. Journal of the Experimental Forest of National Taiwan University, 24(3), 169–183. Coops, N. C., Waring, R. H., & Hilker, T. (2012). Prediction of soil properties using a process-based forest growth model to match satellite-derived estimates of leaf area index. Remote Sensing of Environment, 126, 160–173. https://doi.org/10.1016/j.rse.2012.08.024 Dietrich, R., & Anand, M. (2019). Trees do not always act their age: Size-deterministic tree ring standardization for long-term trend estimation in shade-tolerant trees. Biogeosciences, 16(24), 4815–4827. https://doi.org/10.5194/bg-16-4815-2019 Forrester, D. I. (2021). 3-PG User Manual. Forrester, D. I., & Tang, X. (2016). Analysing the spatial and temporal dynamics of species interactions in mixed-species forests and the effects of stand density using the 3-PG model. Ecological Modelling, 319, 233–254. https://doi.org/10.1016/j.ecolmodel.2015.07.010 Forrester, D. I., Ammer, C., Annighöfer, P. J., Avdagic, A., Barbeito, I., Bielak, K., Brazaitis, G., Coll, L., del Río, M., Drössler, L., Heym, M., Hurt, V., Löf, M., Matović, B., Meloni, F., den Ouden, J., Pach, M., Pereira, M. G., Ponette, Q., … Bravo-Oviedo, A. (2017). Predicting the spatial and temporal dynamics of species interactions in Fagus sylvatica and Pinus sylvestris forests across Europe. Forest Ecology and Management, 405, 112–133. https://doi.org/10.1016/j.foreco.2017.09.029 Forrester, D. I., Baker, T. G., Elms, S. R., Hobi, M. L., Ouyang, S., Wiedemann, J. C., Xiang, W., Zell, J., & Pulkkinen, M. (2021). Self-thinning tree mortality models that account for vertical stand structure, species mixing and climate. Forest Ecology and Management, 487(January), 118936. https://doi.org/10.1016/j.foreco.2021.118936 Freedman, D., Pisani, R., & Purves, R. (2007). Statistics (international student edition) (Pisani, R.). WW Norton & Company. Fukuda, M., Iehara, T., & Matsumoto, M. (2003). Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management, 184(1–3), 1–16. https://doi.org/10.1016/S0378-1127(03)00146-4 Gonzalez-Benecke, C. A., Jokela, E. J., Cropper, W. P., Bracho, R., & Leduc, D. J. (2014). Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure. Forest Ecology and Management, 327, 55–75. https://doi.org/10.1016/j.foreco.2014.04.030 Gu, L., Baldocchi, D. D., Wofsy, S. C., William Munger, J., Michalsky, J. J., Urbanski, S. P., & Boden, T. A. (2003). Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299(5615), 2035–2038. https://doi.org/10.1126/science.1078366 Guan, B. T., Lin, S. T., Lin, Y. H., & Wu, Y. S. (2008). No initial size advantage for Japanese cedars in crowded stands. Forest Ecology and Management, 255(3–4), 1078–1084. https://doi.org/10.1016/j.foreco.2007.10.014 Hiroshima, T., Toyama, K., Suzuki, S. N., Owari, T., Nakajima, T., & Ishibashi, S. (2020). Long observation period improves growth prediction in old Sugi (Cryptomeria japonica) forest plantations. Journal of Forest Research, 25(3), 183–191. https://doi.org/10.1080/13416979.2020.1753280 Howell, T. A. (1995). Comparison of Vapor-Pressure-Deficit Calculation Methods — Southern High Plains. Journal of Irrigation and Drainage Engineering, 121(2), 191–198. https://doi.org/10.1061/(ASCE)0733-9437(1995)121 Huang, J. (2018). A simple accurate formula for calculating saturation vapor pressure of water and ice. Journal of Applied Meteorology and Climatology, 57(6), 1265–1272. https://doi.org/10.1175/JAMC-D-17-0334.1 IPCC. (2013). Climate System Scenario Tables. Climate Change 2013 - The Physical Science Basis, 1395–1446. https://doi.org/10.1017/cbo9781107415324.030 Jung, S. C., Lumbres, R. I. C., Won, H. K., & Seo, Y. O. (2014). Allometric equations, stem density and biomass expansion factors for Cryptomeria japonica in Mount Halla, Jeju Island, Korea. Journal of Ecology and Environment, 37(4), 177–184. https://doi.org/10.5141/ecoenv.2014.021 Katsuno, M., & Hozumi, K. (1990). Estimation of leaf area at the level of branch, tree and stand in Cryptomeria japonica. Ecological Research, 5(1), 93–109. https://doi.org/10.1007/BF02348466 Kira, T., & Shidei, T. (1967). Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Japanese Journal of Ecology, 17(2), 70–87. Kuo, P.-C., Wang, T.-T., Chen, B.-T., & Li, W.-L. (1984). Effects of forest composition on the squirrel damage in coniferous plantations. In Experimental Forest of National Taiwan University, Technical Bulletin 148. Kuo, S.-R. 2013. 國有人工針葉樹種純林之育林作業方案芻議 [Opinions on the Silvicultural Operation Plans for National Plantations of Pure Coniferous Stands (In Mandarin)]. Forestry Research Newsletter 20(6):1–11. Lai, I. L., Schroeder, W. H., Wu, J. T., Kuo-Huang, L. L., Mohl, C., & Chou, C. H. (2007). Can fog contribute to the nutrition of Chamaecyparis obtusa var. formosana? Uptake of a fog solute tracer into foliage and transport to roots. Tree Physiology, 27(7), 1001–1009. https://doi.org/10.1093/treephys/27.7.1001 Lai, Y.-J., Hong, C.-Y., Wey, T.-H., Chang, C.-S., Chiang, P.-N., Wei, C., Yu, J.-C., Juang, J.-Y., Hsieh, C.-I., Tsai, M.-J., & Wang, Y.-N. (2012). Preliminary Study of CO2 Flux in Xitou Area. Journal of the Experimental Forest of National Taiwan University, 26(3), 211–224. https://doi.org/10.6542/EFNTU.201209 Lam, T. Y., & Guan, B. T. (2020). Modeling stand basal area growth of Cryptomeria japonica D. Don under different planting densities in Taiwan. Journal of Forest Research, 25(3), 174–182. https://doi.org/10.1080/13416979.2020.1733171 Landsberg, J. J., & Gower, S. T. (1997). Applications of physiological ecology to forest management. Elsevier. Landsberg, J. J., & Hingston, F. J. (1996). Evaluating a simple radiation/dry matter conversion model using data from Eucalyptus globulus plantations in Western Australia. Tree Physiology, 16(10), 801–808. https://doi.org/10.1093/treephys/16.10.801 Landsberg, J. J., & Waring, R. H. (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95(3), 209–228. https://doi.org/10.1016/S0378-1127(97)00026-1 Larson, A. J., & Franklin, J. F. (2010). The tree mortality regime in temperate old-growth coniferous forests: The role of physical damage. Canadian Journal of Forest Research, 40(11), 2091–2103. https://doi.org/10.1139/X10-149 Larson, A. J., Lutz, J. A., Donato, D. C., Freund, J. A., Swanson, M. E., Hillerislambers, J., Sprugel, D. G., & Franklin, J. F. (2015). Spatial aspects of tree mortality strongly differ between young and old-growth forests. Ecology, 96(11), 2855–2861. Lee, H.-R. (2020). 溪頭柳杉及紅檜老齡人工林之林木生長量、枯落物量與生態系統碳儲存量 [Tree Growth, Litterfall Mass and Ecosystem Carbon Stocks of Old Japanese Cedar and Taiwan Red Cypress Plantations in Xitou (In Mandarin with English Abstract)]. National Taiwan University. https://doi.org/http://dx.doi.org/10.6342%2fNTU202004012 Lin, H. Y., Hu, J. M., Chen, T. Y., Hsieh, C. F., Wang, G., & Wang, T. (2018). A dynamic downscaling approach to generate scale-free regional climate data in Taiwan. Taiwania, 63(3), 251–266. https://doi.org/10.6165/tai.2018.63.251 Lin, Y.-H. (2009). 柳杉栽植距離試驗之林分斷面積生長與收穫 [Stand Basal Area Growth and Yield of Japanese Cedar in a Spacing Trail (In Mandarin)]. National Taiwan University. https://doi.org/10.6342/NTU.2009.03341 Liu, S.-H. 1976. 森林經理學 [Forest Management (In Mandarin)]. National Chung Hsing University Forest Management Laboratory. Long, J. N., & Smith, F. W. (1992). Volume increment in Pinus contorta var. latifolia: the influence of stand development and crown dynamics. Forest Ecology and Management, 53(1–4), 53–64. https://doi.org/10.1016/0378-1127(92)90033-6 López-Serrano, F. R., Martínez-García, E., Dadi, T., Rubio, E., García-Morote, F. A., Lucas-Borja, M. E., & Andrés-Abellán, M. (2014). Biomass growth simulations in a natural mixed forest stand under different thinning intensities by 3-PG process-based model. European Journal of Forest Research, 134(1), 167–185. https://doi.org/10.1007/s10342-014-0841-3 McAneney, K., & Arrúe, J. (1993). A wheat-fallow rotation in northeastern Spain: water balance-yield considerations. Agronomie, 13, 481–490. https://doi.org/10.1051/agro Meyer, G., Black, T. A., Jassal, R. S., Nesic, Z., Coops, N. C., Christen, A., Fredeen, A. L., Spittlehouse, D. L., Grant, N. J., Foord, V. N., & Bowler, R. (2018). Simulation of net ecosystem productivity of a lodgepole pine forest after mountain pine beetle attack using a modified version of 3-PG. Forest Ecology and Management, 412, 41–52. https://doi.org/10.1016/j.foreco.2018.01.034 Meyer, G., Black, T. A., Jassal, R. S., Nesic, Z., Grant, N. J., Spittlehouse, D. L., Fredeen, A. L., Christen, A., Coops, N. C., Foord, V. N., & Bowler, R. (2017). Measurements and simulations using the 3-PG model of the water balance and water use efficiency of a lodgepole pine stand following mountain pine beetle attack. Forest Ecology and Management, 393, 89–104. https://doi.org/10.1016/j.foreco.2017.03.019 Mitsuda, Y., Hosoda, K., Iehara, T., & Matsumoto, M. (2011). Preliminary analysis on the use of a process-based forest growth model of Cryptomeria japonica planted forest to represent the effects of canopy structure change. Formath, 10(0), 169–193. https://doi.org/10.15684/formath.10.169 National Taiwan University Experimental Forest. (n.d.). 實驗林簡介 - 認識實驗林 - 國立臺灣大學生物資源暨農學院實驗林管理處 [Introduction to the Experimental Forest - Understanding the Experimental Forest - The Experimental Forest, College of Bioresources and Agriculture, National Taiwan University (In Mandarin with English Version Website)]. Retrieved April 18, 2022, from https://www.exfo.ntu.edu.tw/page.php?id=11 National Taiwan University. (2020). National Taiwan University SDGs Report 2019. In National Taiwan University. https://oir.ntu.edu.tw/ntuir/ Nyaga, J. M., Neff, J. C., & Cramer, M. D. (2015). The contribution of occult precipitation to nutrient deposition on the west coast of South Africa. PLoS ONE, 10(5). https://doi.org/10.1371/JOURNAL.PONE.0126225 Odum, E. P. (1969). The strategy of ecosystem development. Science, 164, 262–270. https://doi.org/10.1126/science.164.3877.262 Ogawa, K. (2005). Time-trajectory of mean phytomass and density during a course of self-thinning in a sugi (Cryptomeria japonica D. Don) plantation. Forest Ecology and Management, 214(1–3), 104–110. https://doi.org/10.1016/j.foreco.2005.03.067 Ogawa, K. (2017). Modeling age-related leaf biomass changes in forest stands under the assumptions of the self-thinning law. Trees - Structure and Function, 31(1), 165–172. https://doi.org/10.1007/s00468-016-1465-7 Osone, Y., Hashimoto, S., Kenzo, T., Araki, M. G., Inoue, Y., Shichi, K., Toriyama, J., Yamashita, N., Tsuruta, K., Ishizuka, S., Nagakura, J., Noguchi, K., Ono, K., Sakai, H., Sakai, Y., Sano, T., Shigenaga, H., Shinohara, Y., & Yazaki, K. (2020). Plant trait database for Cryptomeria japonica and Chamaecyparis obtusa (SugiHinoki DB): Their physiology, morphology, anatomy and biochemistry. Ecological Research, 35(1), 274–275. https://doi.org/10.1111/1440-1703.12062 Putz, F. E., Parker, G. G., & Archibald, R. M. (1984). Mechanical abrasion and intercrown spacing. The American Midland Naturalist, 112(1), 24–28. Ritter, A., Regalado, C. M., & Aschan, G. (2009). Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain). Tree Physiology, 29(4), 517–528. https://doi.org/10.1093/treephys/tpn043 Ryan, M. G., Binkley, D., & Fownes, J. H. (1997). Age-related decline in forest productivity: pattern and process. In Advances in Ecological Research (Vol. 27, Issue C). https://doi.org/10.1016/S0065-2504(08)60009-4 Ryan, M. G., Binkley, D., Fownes, J. H., Giardina, C. P., & Senock, R. S. (2004). An experimental test of the causes of forest growth decline with stand age. Ecological Monographs, 74(3), 393–414. https://doi.org/10.1890/03-4037 Sands, P. J. (2004). Adaptation of 3-PG to novel species : guidelines for data collection and parameter assignment. Sands, P. J., & Landsberg, J. J. (2002). Parameterisation of 3-PG for plantation grown Eucalyptus globulus. Forest Ecology and Management, 163(1–3), 273–292. https://doi.org/10.1016/S0378-1127(01)00586-2 Sato, H., Itoh, A., & Kohyama, T. (2007). SEIB–DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecological Modelling, 200(3–4), 279–307. https://doi.org/10.1016/j.ecolmodel.2006.09.006 Schulz, H. M., Li, C. F., Thies, B., Chang, S. C., & Bendix, J. (2017). Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. PLoS ONE, 12(2). https://doi.org/10.1371/journal.pone.0172663 Shimano, K. (1997). Analysis of the relationship between DBH and crown projection area using a new model. Journal of Forest Research, 2(4), 237–242. https://doi.org/10.1007/BF02348322 Shinozaki, K., Yoda, K., Hozumi, K., & Kira, T. (1964a). A quantitative analysis of plant form – the pipe model theory. I. Basic analyses. Japanese Journal of Ecology, 14(3), 97–105. Shinozaki, K., Yoda, K., Hozumi, K., & Kira, T. (1964b). A quantitative analysis of plant form – the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Japanese Journal of Ecology, 14(4), 133–139. Sithole, Z. (2011). Parameterisation of the 3-PG process based model in predicting the growth and water use of Pinus elliottii in South Africa. University of KwaZulu-Natal. Still, C. J., Riley, W. J., Biraud, S. C., Noone, D. C., Buenning, N. H., Randerson, J. T., Torn, M. S., Welker, J., White, J. W. C., Vachon, R., Farquhar, G. D., & Berry, J. A. (2009). Influence of clouds and diffuse radiation on ecosystem-atmosphere CO 2 and CO18O exchanges. Journal of Geophysical Research: Biogeosciences, 114(1), 1–17. https://doi.org/10.1029/2007JG000675 Tadaki, Y., & Kawasaki, Y. (1966). Studies on the production structure of forest (IX). Primary productivity of a young Cryptomeria japonica plantation with excessively high stand density. Journal of the Japanese Forest Society, 48, 55–61. Tadaki, Y., Ogata, N., & Nagatomo, Y. (1965). 九州スギ林の物質生産力 [The dry matter productivity in several stands of Cryptomeria japonica in Kyushu (In Japanese with English summary)]. Bulletin of the Government Forest Experiment Station (Tokyo), 173, 45-63. https://cir.nii.ac.jp/crid/1574231874736277504 Tadaki, Y., Ogata, N., & Nagatomo, Y. (1967). 森林の生産構造に関する研究(XI)サシキスギと実生スギの28年生造林地の物質生産力 [Studies on production structure of forest (XI). Primary productivities of 28-year-old plantations of Cryptomeria of cuttings and of seedlings origin (In Japanese with English summary)]. Bulletin of the Government Forest Experiment Station (Tokyo), 199, 17-65. Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1 TCCIP. (2021a). AR5統計降尺度溫度V2版-資料生產履歷 [AR5 Statistical Downscaled Daily Temperature Data Version V2 - Data Production History (In Mandarin)]. TCCIP. (2021b). 網格化觀測溫度日資料生產履歷 [Gridded Historical Daily Temperture Data Production History (In Mandarin)]. Templer, P. H., Weathers, K. C., Ewing, H. A., Dawson, T. E., Mambelli, S., Lindsey, A. M., Webb, J., Boukili, V. K., & Firestone, M. K. (2015). Fog as a source of nitrogen for redwood trees: evidence from fluxes and stable isotopes. https://doi.org/10.1111/1365-2745.12462 The Experimental Forest, College of Bio-Resources and Agriculture, N. T. U. (2019). 國立臺灣大學生物資源暨農學院實驗林經營計畫 [Management Plan of The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University (In Mandarin)] (N. T. U. The Experimental Forest, College of Bio-Resources and Agriculture, Ed.; 1st ed.). The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University. van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1), 5–31. https://doi.org/10.1007/s10584-011-0148-z Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … Vázquez-Baeza, Y. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2 Wang, C. H. (2005). 溪頭森林集水區地下水文特性之研究 [A Study on Subsurface Flow Characteristics of the Mountainous Watershed in Central Part of Taiwan (In Mandarin)]. National Taiwan University. Wang, P.-J., Wang, D.-H., & Lin, J.-C. (2013). 台灣柳杉造林歷史回顧及經營方式探討 [The History Review and Management about Japanese Cedar (Cryptomeria japonica) Plantations in Taiwan (In Mandarin)]. Quarterly Jounal of Chinese Forestry, 46(2), 179–188. Wang, T.-T., Tai, K.-Y., Chiao, K.-M., & Shi, C.-F. (1966). 柳杉栽植距離之研究 [Spacing study in Cryptomeria plantations (In Mandarin with English Summary)]. College of Agriculture, National Taiwan University. Wang, Y.-N., Tsai, M.-J., Liou, C.-F., & Cheng, C.-P. (2009). 疏伐對柳杉插條苗與實生苗造林木生長之影響 [Influence of thinning on cutting grown tree and seedling grown tree of Cryptomeria japonica (In Mandarin)]. Journal of the Experimental Forest of National Taiwan University, 23(4), 267–283. https://doi.org/10.6542/EFNTU.200912 Weathers, K. C., Lovett, G. M., Likens, G. E., & Caraco, N. F. M. (2000). Cloudwater inputs of nitrogen to forest ecosystem in southern Chile: Forms, fluxes, and sources. Ecosystems, 3(6), 590–595. https://doi.org/10.1007/s100210000051 Whitehead, D., Hall, G. M. J., Walcroft, A. S., Brown, K. J., Landsberg, J. J., Tissue, D. T., Turnbull, M. H., Griffin, K. L., Schuster, W. S. F., Carswell, F. E., Trotter, C. M., James, I. L., & Norton, D. A. (2002). Analysis of the growth of rimu (Dacrydium cupressinum) in South Westland, New Zealand, using process-based simulation models. International Journal of Biometeorology, 46(2), 66–75. https://doi.org/10.1007/S00484-001-0122-Y Xie, Y., Wang, H., & Lei, X. (2017). Application of the 3-PG model to predict growth of Larix olgensis plantations in northeastern China. Forest Ecology and Management, 406, 208–218. https://doi.org/10.1016/j.foreco.2017.10.018 Xu, C. Y., Turnbull, M. H., Tissue, D. T., Lewis, J. D., Carson, R., Schuster, W. S. F., Whitehead, D., Walcroft, A. S., Li, J., & Griffin, K. L. (2012). Age-related decline of stand biomass accumulation is primarily due to mortality and not to reduction in NPP associated with individual tree physiology, tree growth or stand structure in a Quercus-dominated forest. Journal of Ecology, 100(2), 428–440. https://doi.org/10.1111/j.1365-2745.2011.01933.x Yoda, K., Kira, T., Ogawa, H., & Hozumi, K. (1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants XI). Journal of Biology, 14, 107–129. Yuruki, T. (1964). 林木の成長を支配する要因に関する解析的研究 [Analytical studies on factors controlling tree growth (In Japanese with English summary)]. Bulletin of the Kyushu University Forests, 37, 85-178 (In Japanese with English summary). Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database. http://hdl.handle.net/10255/dryad.235. Zeide, B. (1993). Analysis of Growth Equations. Forest Science, 39(3), 594–616. https://doi.org/10.1093/forestscience/39.3.594 獎勵造林樹種及每公頃栽植株數基準表 [Table of Standards of Species and Planting Stem Number per Hectare for the Encouragement of Afforestation Policy (In Mandarin)] (2014, February 21).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86017-
dc.description.abstract氣候變遷不可逆的後果促使各行各業實現碳中和的目標。森林則被用作吸收二氧化碳的自然解方(nature-based solution)。儘管如此,缺乏在氣候變遷下,能可靠預測生長的生長機制模型(mechanistic model),阻礙了臺灣制定更好的碳吸存(carbon sequestration)森林經營策略。為了結合氣候變遷對林分生長的影響,本研究為臺灣大學實驗林的柳杉(Cryptomeria japonica)人工林開發了一林分生長混合模型(hybrid model),即結合動態冠層孔隙與泊松死亡之生理原理生長預測模型(Physiological Principles for Predicting Growth with Dynamic Canopy Opening and Poisson Mortality, 3-PGDCOP),以應用於森林經營及林學研究。3-PGDCOP根據氣候因子模擬動態林分生長,透過異速生長方程式(allometric equations)估計生物量分配(biomass allocation),以零膨脹泊松模型(zero-inflated Poisson modeling)量化死亡率,並根據林分狀態變數(stand state variables)模擬動態冠層孔隙(canopy opening)。為了對模型進行參數化和校正,本研究回顧現有文獻和植物性狀開放資料庫,並統整臺灣大學實驗林二十三個柳杉試驗地之長期氣象及林分生長資料,林齡69至107年不等(2019年)。模型驗證結果顯示模型表現良好,林分密度(stand density)的方均根誤差(root mean square error, RMSE)及平均絕對百分比誤差(mean absolute percentage error, MAPE)分別為235 st ha-1及18.4%,方均根胸徑(quadratic mean diameter at breast height)則分別為2.3 cm及6.3%。模型對觀察值變異量(variation)的解釋能力高,對林分密度及方均根胸徑的決定係數(coefficient of determination, R2)分別達0.943及0.943。 異速生長方程式的參數化結果顯示植物根莖葉之生物量與方均根胸徑之間的異速生長關係存在地域差異。雙層泊松死亡率模型(2-layer Poisson mortality model)能有效模擬自我疏伐(self-thinning),其模型誤差暗示在老齡林中存在非依密度之死亡機制(density-independent mortality process)。冠層地面覆蓋比例(fractional ground cover by the canopy)模擬了不同栽植密度下之林分冠層發展情形。 為協助柳杉人工林經營者應對氣候變遷,本研究將3-PGDCOP應用於氣候變遷及人為林分更新情境分析(scenario analyses)、栽植密度之決定、立地肥沃度(fertility rating)之估計,以及葉部生物量異速生長分析。分析結果建議臺灣大學實驗林人為更新老齡柳杉人工林林分,並將未來種植之柳杉林輪伐期(rotation age)定為35-48年,疏伐年限(age limit for thinning)定為18-23年,栽植密度定為3000 st ha-1,以在未來氣候中獲得更好的碳儲存能力和更高的木材產量。在上述建議範圍內,若未來溫室氣體集體輻射強迫力(radiative forcing)較高,輪伐期和疏伐年限應隨之加長,反之亦然。立地肥沃度之估計值與霧頻度(fog frequency)的相關性顯示霧對林分生長有正面影響,相關係數(correlation coefficient)達0.72。模型模擬之葉部異速生長方程式呈現右移現象而非恆定,因此異速生長方程式應建立於具相近林齡之林分生長資料。zh_TW
dc.description.abstractThe irreversible outcomes of climate change have urged all sectors to attain the goal of carbon neutrality. Forests are used as a nature-based solution to absorbed carbon dioxide. Nonetheless, the lack of a mechanistic growth model for reliable predictions under the changing climate hinders the formulation of better forest management strategies for carbon sequestration in Taiwan. To incorporate the influence of climatic variations on stand growth, this study developed a hybrid stand growth model, the Physiological Principles for Predicting Growth with Dynamic Canopy Opening and Poisson Mortality (3-PGDCOP), for the Cryptomeria japonica plantations in the National Taiwan University Experimental Forest (NTUEF) for applications in forest management and research. The 3-PGDCOP simulates dynamic stand growth from climatic variables, estimates biomass allocation by allometric equations, evaluates mortality via zero-inflated Poisson modeling, and simulates dynamic canopy opening from stand state variables. To parameterize and calibrate the model, I reviewed the existing literatures and open database of plant traits, and assembled long-term meteorological and stand growth data across 23 C. japonica sites in the NTUEF with stand ages ranging from 69 to 107 years in 2019. The validation results showed a good model performance, with RMSE and MAPE of 235 st ha-1 and 18.4% for stand density and 2.3 cm and 6.3% for quadratic mean diameter at breast height (DBH), respectively. Model explanatory power on the observed variation was high with a determination of coefficient (R2) of 0.943 for stand density and 0.943 for quadratic mean DBH. The parameterization results of the allometric equations revealed location variations in the allometries between plant part biomasses and the quadratic mean DBH. The 2-layer Poisson mortality model well predicted the self-thinning, and the prediction error implied the existence of a density-independent mortality process in old-growth stands. The fractional ground cover by the canopy simulated the canopy development in stands of various planting densities. To assist C. japonica plantation managers coping with climate change, I applied the 3-PGDCOP in scenario analyses on climate change and artificial regeneration, planting density determination, site-specific fertility rating estimation, and the analysis on foliage biomass allometry. Management recommendations for the C. japonica plantations in the NTUEF are regeneration of the old stands, setting the rotation age to 35-48 years and the age limit for thinning to 18-23 years, and adopting a planting density of 3000 st ha-1 to attain better carbon storage capacity and higher timber production in the future climate. Within the above recommended ranges, the rotation age and the age limit for thinning should be set longer under the conditions of higher collective radiative forcing of greenhouse gases in the future, and vice versa. The correlation between the calibrated fertility rating and fog frequency consented with the view of positive impact of fog on stand growth, with a correlation coefficient of 0.72. The right shift phenomenon in the simulated foliage allometric equation recommended the building of allometric equations on inventory data of similar stand age.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:33:02Z (GMT). No. of bitstreams: 1
U0001-1509202209533600.pdf: 32933541 bytes, checksum: 5b4e8ffba6f5ea5e63408d981b3f6018 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents謝誌 I 摘要 III Abstract V Table of Contents VIII List of Figures X List of Tables XIII Chapter 1. Introduction 1 Chapter 2. Materials and Methods 6 2.1. Materials 6 2.1.1. The long-term growth data of the 23 C. japonica sites in the NTUEF 6 2.1.2. The plant trait database of C. japonica and Chamaecyparis obtusa of Japan 12 2.1.3. TCCIP climate data and data extension 12 2.1.4. Historical observation and future projections of atmospheric carbon dioxide concentration 14 2.2. Methods 14 2.2.1. Model development 16 2.2.2. Model parameterization 31 2.2.3. Model calibration and validation 47 2.2.4. Scenario analyses 51 2.2.5. The analysis on the simulated foliage biomass allometry 56 Chapter 3. Results 58 3.1. Model parameterization results 58 3.1.1. Allometric equations fitting results 58 3.1.2. The 2-layer Poisson mortality model fitting results 61 3.1.3. The modeling results of the fractional ground cover by the canopy 64 3.1.4. The parameterization results of the fertility rating 65 3.2. Model calibration and validation results 68 3.3. Growth forecast under the climate and management scenarios 73 3.3.1. The leave-it-to-grow management in four RCPs 73 3.3.2. Artificial regeneration simulation 75 3.4. The simulated foliage biomass allometry 80 Chapter 4. Discussion 84 4.1. Location variations in the allometric equations 84 4.2. Density-dependent and density-independent mortality 85 4.3. Fractional ground cover by the canopy and planting density 89 4.4. Model error 91 4.5. Future stand growth 94 4.6. Artificial regeneration in the near future 100 4.7. Planting density effects on future stand growth 102 4.8. The calibrated fertility rating and the fog frequency 110 4.9. The foliage biomass allometric shift 113 Chapter 5. Conclusion 115 References 117 Appendix 1 126 Appendix 2 133 Appendix 3 140 Appendix 4 146 Appendix 5 149 Appendix 6 170 Appendix 7 191 Appendix 8 212
dc.language.isoen
dc.subject林分生長zh_TW
dc.subject森林經營zh_TW
dc.subject人工林zh_TW
dc.subject柳杉zh_TW
dc.subject機制模型zh_TW
dc.subject氣候變遷zh_TW
dc.subjectMechanistic modelen
dc.subjectForest managementen
dc.subjectStand growthen
dc.subjectCryptomeria japonicaen
dc.subjectClimate changeen
dc.subjectPlantationen
dc.title柳杉人工林林分生長機制模型之建立與應用zh_TW
dc.titleDevelopment and Applications of a Mechanistic Stand Growth Model for Japanese cedar (Cryptomeria japonica) Plantationsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡明哲(Ming-Jer Tsai),曾彥學(Yen-Hsueh Tseng),林俊成(Jiunn-Cheng Lin)
dc.subject.keyword氣候變遷,林分生長,機制模型,柳杉,人工林,森林經營,zh_TW
dc.subject.keywordClimate change,Stand growth,Mechanistic model,Cryptomeria japonica,Plantation,Forest management,en
dc.relation.page212
dc.identifier.doi10.6342/NTU202203423
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
dc.date.embargo-lift2027-09-15-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
U0001-1509202209533600.pdf
  此日期後於網路公開 2027-09-15
32.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved