請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86001完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅瑄(Sofia Ya Hsuan Liou) | |
| dc.contributor.author | An-Sheng Lee | en |
| dc.contributor.author | 李安昇 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:32:20Z | - |
| dc.date.copyright | 2022-09-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-20 | |
| dc.identifier.citation | 1. Reineck, H.-E., Singh, I. B. Depositional Sedimentary Environments: With Reference to Terrigenous Clastics. (Springer Berlin Heidelberg, 1986). 2. Zolitschka, B., Lee, A.-S., Bermúdez, D. P., Giesecke, T. Environmental variability at the margin of the South American monsoon system recorded by a high-resolution sediment record from Lagoa Dourada (South Brazil). Quaternary Science Reviews 272, 107204 (2021). 3. Streif, H. Sedimentary record of Pleistocene and Holocene marine inundations along the North Sea coast of Lower Saxony, Germany. Quaternary International 112, 3-28 (2004). 4. Leng, M. J., Marshall, J. D. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23, 811-831 (2004). 5. Whitehouse, R. J. S., Harris, J. M., Sutherland, J., Rees, J. The nature of scour development and scour protection at offshore windfarm foundations. Marine Pollution Bulletin 62, 73-88 (2011). 6. Kropelin, S., et al. Climate-driven ecosystem succession in the Sahara: The past 6000 years. Science 320, 765-768 (2008). 7. Fujii, T., et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan. Marine and Petroleum Geology 66, 310-322 (2015). 8. Coughlan, M., Long, M., Doherty, P. Geological and geotechnical constraints in the Irish Sea for offshore renewable energy. Journal of Maps 16, 420-431 (2020). 9. Schulz, H., Zabel, M. Marine Geochemistry, 2nd edn. (Springer, 2006). 10. Archer, D., Maier-Reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260-263 (1994). 11. Ross, P. S., Bourke, A., Fresia, B. A multi-sensor logger for rock cores: Methodology and preliminary results from the Matagami mining camp, Canada. Ore Geology Reviews 53, 93-111 (2013). 12. Cnudde, V., Boone, M. N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews 123, 1-17 (2013). 13. Duchesne, M. J., Moore, F., Long, B. F., Labrie, J. A rapid method for converting medical Computed Tomography scanner topogram attenuation scale to Hounsfield Unit scale and to obtain relative density values. Engineering Geology 103, 100-105 (2009). 14. Francus, P. Image analysis, sediments and paleoenvironments. (Springer Science & Business Media, 2006). 15. Croudace, I. W., Löwemark, L., Tjallingii, R., Zolitschka, B. Current perspectives on the capabilities of high resolution XRF core scanners. Quaternary International 514, 5-15 (2019). 16. Croudace, I. W., Rindby, A., Rothwell, R. G. ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geological Society, London, Special Publications 267, 51-63 (2006). 17. Rothwell, R. G., Rack, F. R. New techniques in sediment core analysis: an introduction. Geological Society, London, Special Publications 267, 1-29 (2006). 18. Zander, P. D., Żarczyński, M., Tylmann, W., Rainford, S.-k., Grosjean, M. Seasonal climate signals preserved in biochemical varves: insights from novel high-resolution sediment scanning techniques. Climate of the Past 17, 2055-2071 (2021). 19. Zander, P. D., et al. A high-resolution record of Holocene primary productivity and water-column mixing from the varved sediments of Lake Żabińskie, Poland. Science of the total environment 755, 143713 (2021). 20. Butz, C., Grosjean, M., Fischer, D., Wunderle, S., Tylmann, W., Rein, B. Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments. Journal of Applied Remote Sensing 9, 096031 (2015). 21. Müller, A. C., Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists, 1 edn. (O'Reilly Media, 2016). 22. Jordan, M. I., Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349, 255-260 (2015). 23. Alpaydin, E. Introduction to Machine Learning (Adaptive Computation and Machine Learning series), 3rd edn. (The MIT Press, 2014). 24. Hastie, T., Tibshirani, R., Friedman, J. The elements of statistical learning: data mining, inference, and prediction. (Springer Science & Business Media, 2009). 25. Kuwatani, T., et al. Machine-learning techniques for geochemical discrimination of 2011 Tohoku tsunami deposits. Scientific Reports 4, 7044 (2014). 26. Murphy, K. P. Machine learning: a probabilistic perspective. (MIT press, 2012). 27. Cichocki, A., Phan, A.-H. Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE transactions on fundamentals of electronics, communications and computer sciences 92, 708-721 (2009). 28. Févotte, C., Idier, J. Algorithms for nonnegative matrix factorization with the β-divergence. Neural computation 23, 2421-2456 (2011). 29. Schubert, E., Sander, J., Ester, M., Kriegel, H. P., Xu, X. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS) 42, 1-21 (2017). 30. Bulian, F., et al. Multi-proxy reconstruction of Holocene paleoenvironments from a sediment core retrieved from the Wadden Sea near Norderney, East Frisia, Germany. Estuarine, Coastal and Shelf Science 225, 106-251 (2019). 31. Gebhardt, A. C., et al. Petrophysical characterization of the lacustrine sediment succession drilled in Lake El'gygytgyn, Far East Russian Arctic. Climate of the Past 9, 1933-1947 (2013). 32. Castelletti, A., Galelli, S., Restelli, M., Soncini-Sessa, R. Tree-based reinforcement learning for optimal water reservoir operation. Water Resources Research 46, (2010). 33. Mnih, V., et al. Human-level control through deep reinforcement learning. Nature 518, 529-533 (2015). 34. Sutton, R. S., Barto, A. G. Reinforcement Learning: An introduction. (MIT Press, 1998). 35. Ai, X., Wang, H., Sun, B. Automatic identification of sedimentary facies based on a support vector machine in the Aryskum Graben, Kazakhstan. Applied Sciences 9, 4489 (2019). 36. Bolandi, V., Kadkhodaie, A., Farzi, R. Analyzing organic richness of source rocks from well log data by using SVM and ANN classifiers: A case study from the Kazhdumi formation, the Persian Gulf basin, offshore Iran. Journal of Petroleum Science and Engineering 151, 224-234 (2017). 37. Wrona, T., Pan, I., Gawthorpe, R. L., Fossen, H. Seismic facies analysis using machine learning. Geophysics 83, 83-95 (2018). 38. Bolton, M. S. M., et al. Machine learning classifiers for attributing tephra to source volcanoes: an evaluation of methods for Alaska tephras. Journal of Quaternary Science 35, 81-92 (2020). 39. Jacq, K., et al. Sedimentary structures discriminations with hyperspectral imaging on sediment cores. Computers and Geosciences, (2020). 40. Ben Dor, Y., et al. Varves of the Dead Sea sedimentary record. Quaternary Science Reviews 215, 173-184 (2019). 41. Behre, K. E. Coastal development, sea-level change and settlement history during the later Holocene in the Clay District of Lower Saxony (Niedersachsen), northern Germany. Quaternary International 112, 37-53 (2004). 42. Davies, S. J., Lamb, H. F., Roberts, S. J. Micro-XRF Core Scanning in Palaeolimnology: Recent Developments. in Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences (ed. Croudace, I. W., Rothwell, R. G.) 189-226 (Springer Netherlands, 2015). 43. Rothwell, R. G., Croudace, I. W. Twenty years of XRF core scanning marine sediments: What do geochemical proxies tell us? in Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences (ed. Croudace, I. W., Rothwell, R. G.) 25-102 (Springer, 2015). 44. Anderton, R. Clastic facies models and facies analysis. Geological Society, London, Special Publications 18, 31-47 (1985). 45. Daidu, F., Yuan, W., Min, L. Classifications, sedimentary features and facies associations of tidal flats. Journal of Palaeogeography 2, 66-80 (2013). 46. Ltd, G. Geotek X-ray core imaging with CT. in) (2018). 47. Hounsfield, G. N. Computerized transverse axial scanning (tomography): Part 1. Description of system. The British journal of radiology 46, 1016-1022 (1973). 48. Zolitschka, B., Mingram, J., Gaast, S. V. D., Jansen, J., Naumann, R. Sediment logging techniques. in Tracking environmental change using lake sediments 137-153 (Springer, 2002). 49. Vos, P. C., Van Kesteren, W. P. The long-term evolution of intertidal mudflats in the northern Netherlands during the Holocene; natural and anthropogenic processes. Continental Shelf Research 20, 1687-1710 (2000). 50. Meijles, E. W., et al. Holocene relative mean sea-level changes in the Wadden Sea area, northern Netherlands. Journal of Quaternary Science 33, 905-923 (2018). 51. Dijkema, K. S., Reineck, H. E., Wolff, W. J., Group, W. S. W. Geomorphology of the Wadden Sea Area: Final Report of the Section 'Geomorphology' of the Wadden Sea Working Group. (Balkema, 1980). 52. Ehlers, J. Morphodynamics Wadden Sea, 1 edn. (A.A. Balkema, 1988). 53. Dellwig, O., Hinrichs, J., Hild, A., Brumsack, H. J. Changing sedimentation in tidal fiat sediments of the southern north sea from the holocene to the present: A geochemical approach. Journal of Sea Research 44, 195-208 (2000). 54. Kolditz, K., Dellwig, O., Barkowski, J., Badewien, T. H., Freund, H., Brumsack, H. J. Geochemistry of salt marsh sediments deposited during simulated sea-level rise and consequences for recent and Holocene coastal development of NW Germany. Geo-Marine Letters 32, 49-60 (2012). 55. Kolditz, K., et al. Geochemistry of Holocene salt marsh and tidal flat sediments on a barrier island in the southern North Sea (Langeoog, North-west Germany). Sedimentology 59, 337-355 (2012). 56. Dellwig, O., et al. Geochemical and microfacies characterization of a Holocene depositional sequence in northwest Germany. Organic Geochemistry 29, 1687-1699 (1998). 57. Dellwig, O., Watermann, F., Brumsack, H. J., Gerdes, G. High-resolution reconstruction of a holocene coastal sequence (NW Germany) using inorganic geochemical data and diatom inventories. Estuarine, Coastal and Shelf Science 48, 617-633 (1999). 58. Freund, H., Gerdes, G., Streif, H., Dellwig, O., Watermann, F. The indicative meaning of diatoms, pollen and botanical macro fossils for the reconstruction of palaeoenvironments and sea-level fluctuations along the coast of Lower Saxony; Germany. Quaternary International 112, 71-87 (2004). 59. Schüttenhelm, R. T. E., Laban, C. Heavy minerals, provenance and large scale dynamics of seabed sands in the Southern North Sea: Baak's (1936) heavy mineral study revisited. Quaternary International 133-134, 179-193 (2005). 60. Beck, M., et al. Imprint of past and present environmental conditions on microbiology and biogeochemistry of coastal Quaternary sediments. Biogeosciences 8, 55-68 (2011). 61. Dellwig, O., Böttcher, M. E., Lipinski, M., Brumsack, H. J. Trace metals in Holocene coastal peats and their relation to pyrite formation (NW Germany). Chemical Geology 182, 423-442 (2002). 62. Flemming, B., Ziegler, K. High-resolution grain size distribution patterns and textural trends in the backbarrier environment of Spiekeroog Island (southern North Sea). Senckenbergiana maritima 26, 1-24 (1995). 63. Flemming, B. W., Nyandwi, N. Land reclamation as a cause of fine-grained sediment depletion in backbarrier tidal flats (Southern North Sea). Netherlands Journal of Aquatic Ecology 28, 299-307 (1994). 64. Hinrichs, J., Dellwig, O., Brumsack, H. J. Lead in sediments and suspended particulate matter of the German Bight: Natural versus anthropogenic origin. Applied Geochemistry 17, 621-632 (2002). 65. Instruments, B. MS2/MS3 Magnetic Susceptibility System Manual. in) (1999). 66. de Montety, L., Long, B., Desrosiers, G., Crémer, J., Locat, J., Stora, G. Scanner use for sediment study: the influence of physical parameters, chemistry and biology on tomographic intensities. Canadian Journal of Earth Sciences 40, 937-948 (2003). 67. Stalling, D., Westerhoff, M., Hege, H.-C. Amira: A highly interactive system for visual data analysis. The visualization handbook 38, 749-767 (2005). 68. Aitchison, J. The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological) 44, 139-160 (1982). 69. Lee, A.-S., Huang, J.-J. S., Burr, G., Kao, L. C., Wei, K.-Y., Liou, S. Y. H. High resolution record of heavy metals from estuary sediments of Nankan River (Taiwan) assessed by rigorous multivariate statistical analysis. Quaternary International 527, 44-51 (2019). 70. Weltje, G. J., Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters 274, 423-438 (2008). 71. Loska, K., Wiechuła, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51, 723-733 (2003). 72. Schwestermann, T., et al. Multivariate Statistical and Multiproxy Constraints on Earthquake‐Triggered Sediment Remobilization Processes in the Central Japan Trench. Geochemistry, Geophysics, Geosystems 21, e2019GC008861 (2020). 73. Pedregosa, F., et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825-2830 (2011). 74. Kaiser, H. F. The application of electronic computers to factor analysis. Educational and psychological measurement 20, 141-151 (1960). 75. Nederbragt, A. J., Thurow, J. W. Digital sediment colour analysis as a method to obtain high resolution climate proxy records. in Image analysis, sediments and paleoenvironments 105-124 (Springer, 2005). 76. Berns, R. S. Billmeyer and Saltzman’s Principles of Color Technology, 3rd edn. (Wiley-Interscience, 2000). 77. Van Der Walt, S., et al. Scikit-image: Image processing in python. PeerJ 2, e453 (2014). 78. Silverman, B. W. Density Estimation for Statistics and Data Analysis. (Chapman & Hall Ltd., 1986). 79. Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in Science and Engineering 9, 99-104 (2007). 80. McKinney, W. Data Structures for Statistical Computing in Python. in The 9th Python in Science Conference 56-61 (2010). 81. Millman, K. J., Aivazis, M. Python for scientists and engineers. Computing in Science & Engineering 13, 9-12 (2011). 82. Van Der Walt, S., Colbert, S. C., Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Computing in Science and Engineering 13, 22-30 (2011). 83. Virtanen, P., et al. SciPy 1.0--Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261-272 (2020). 84. Capperucci, R. M., Bartholomä, A., Bungenstock, F., Enters, D., Karle, M., Wehrmann, A. The WASA core catalogue of Late Quaternary depositional sequences in the central Wadden Sea-a manual for the core repository. Netherlands Journal of Geosciences, (2022). 85. Wang, M., et al. A 600-year flood history in the Yangtze River drainage: comparison between a subaqueous delta and historical records. Chinese Science Bulletin 56, 188-195 (2011). 86. Sluijs, A., et al. Arctic late Paleocene–early Eocene paleoenvironments with special emphasis on the Paleocene‐Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302). Paleoceanography 23, (2008). 87. Keppler, F., Biester, H. Peatlands: A major sink of naturally formed organic chlorine. in Chemosphere). Elsevier Ltd (2003). 88. Leri, A. C., Myneni, S. C. B. Natural organobromine in terrestrial ecosystems. Geochimica et Cosmochimica Acta 77, 1-10 (2012). 89. Zolitschka, B., et al. Pleistocene climatic and environmental variations inferred from a terrestrial sediment record–the Rodderberg Volcanic Complex near Bonn, Germany. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 165, 407-424 (2014). 90. Jaccard, S., et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth and Planetary Science Letters 277, 156-165 (2009). 91. Ziegler, M., Lourens, L. J., Tuenter, E., Reichart, G.-J. Anomalously high Arabian Sea productivity conditions during MIS 13. Climate of the Past Discussions 5, 1989-2018 (2009). 92. Schaumann, R. M., et al. The Middle Pleistocene to early Holocene subsurface geology of the Norderney tidal basin: new insights from core data and high-resolution sub-bottom profiling (Central Wadden Sea, southern North Sea). Netherlands Journal of Geosciences 100, e15 (2021). 93. Dellwig, O., Watermann, F., Brumsack, H. J., Gerdes, G., Krumbein, W. E. Sulphur and iron geochemistry of Holocene coastal peats (NW Germany): A tool for palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 167, 359-379 (2001). 94. Alve, E., Murray, J. W. Experiments to determine the origin and palaeoenvironmental significance of agglutinated foraminiferal assemblages. in Proc. IV Inter. Workshop on Agglutinated Foraminira. Krakow: Grzybowsky Foundation 1-11 (1995). 95. Nyquist, H. Certain Topics in Telegraph Transmission Theory. Transactions of the American Institute of Electrical Engineers 47, 617-644 (1928). 96. Shannon, C. E. Communication in the Presence of Noise. Proceedings of the IRE 37, 10-21 (1949). 97. Francus, P., Pirard, E. Testing for sources of errors in quantitative image analysis. in Image analysis, sediments and paleoenvironments 87-102 (Springer, 2005). 98. Charman, D. J. Peat and Peatlands. in Encyclopedia of Inland Waters). Elsevier Inc. (2009). 99. Mack, G. H., James, W. C., Monger, H. C. Classification of paleosols. Geological Society of America Bulletin 105, 129-136 (1993). 100. Reinick, H. E., Wunderlich, F. Classification and origin of flaser and lenticular bedding. Sedimentology 11, 99-104 (1968). 101. Karle, M., Bungenstock, F., Wehrmann, A. Holocene coastal landscape development in response to rising sea level in the Central Wadden Sea coastal region. Netherlands Journal of Geosciences 100, e12 (2021). 102. Sheldon, N. D., Tabor, N. J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews 95, 1-52 (2009). 103. Wu, S., et al. Artificial intelligence reveals environmental constraints on colour diversity in insects. Nature Communications 10, (2019). 104. Yu, Y., et al. Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nature communications 13, 1-11 (2022). 105. Basu, T., et al. Automated facies estimation from integration of core, petrophysical logs, and borehole images. in AAPG Annual Meeting 1-7 (2002). 106. Bittmann, F., Bungenstock, F., Wehrmann, A. Drowned palaeo-landscapes: archaeological and geoscientific research at the southern North Sea coast. Netherlands Journal of Geosciences 101, e3 (2022). 107. Martin‐Puertas, C., Tjallingii, R., Bloemsma, M., Brauer, A. Varved sediment responses to early Holocene climate and environmental changes in Lake Meerfelder Maar (Germany) obtained from multivariate analyses of micro X‐ray fluorescence core scanning data. Journal of Quaternary Science 32, 427-436 (2017). 108. Lintern, A., et al. Sediment cores as archives of historical changes in floodplain lake hydrology. Science of the Total Environment 544, 1008-1019 (2016). 109. Miller, H., Croudace, I. W., Bull, J. M., Cotterill, C. J., Dix, J. K., Taylor, R. N. A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis. Environmental science & technology 48, 7254-7263 (2014). 110. Wilkinson, M. D., et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 160018 (2016). 111. Bittmann, F., Bungenstock, F., Wehrmann, A. Drowned palaeo-landscapes: archaeological and geoscientific research at the southern North Sea coast. Netherlands Journal of Geosciences 101, (2022). 112. Schlütz, F., Enters, D., Bittmann, F. From dust till drowned: the Holocene landscape development at Norderney, East Frisian Islands. Netherlands Journal of Geosciences 100, e7 (2021). 113. Ng, A. Machine learning yearning. (deeplearning.ai, 2018). 114. Lee, A.-S., Enters, D., Titschack, J., Zolitschka, B. Facies characterisation of sediments from the East Frisian Wadden Sea (Germany): new insights from down-core scanning techniques. Netherlands Journal of Geosciences 100, e8 (2021). 115. Weltje, G. J., Bloemsma, M. R., Tjallingii, R., Heslop, D., Röhl, U., Croudace, I. W. Prediction of Geochemical Composition from XRF Core Scanner Data: A New Multivariate Approach Including Automatic Selection of Calibration Samples and Quantification of Uncertainties. in Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences (ed. Croudace, I. W., Rothwell, R. G.) 507-534 (Springer Netherlands, 2015). 116. Pawlowsky-Glahn, V., Egozcue, J. J. Compositional data and their analysis: An introduction. Geological Society Special Publication 264, 1-10 (2006). 117. Abu-Mostafa, Y. S., Magdon-Ismail, M., Lin, H.-T. Learning From Data: A Short Course. (AMLBook, 2012). 118. Morales, J. L., Nocedal, J. Remark on “algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization”. ACM Trans Math Softw 38, Article 7 (2011). 119. Breiman, L. Random forests. in Machine Learning 5-32 (Springer, 2001). 120. Chang, C.-C., Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology 2, 1-27 (2011). 121. King, G., Zeng, L. Logistic Regression in Rare Events Data. Political Analysis 9, 137-163 (2001). 122. Brodersen, K. H., Ong, C. S., Stephan, K. E., Buhmann, J. M. The balanced accuracy and its posterior distribution. in International Conference on Pattern Recognition 3121-3124 (2010). 123. Kelleher, J. D., Mac Namee, B., D'arcy, A. Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies. (MIT press, 2020). 124. Harris, C. R., et al. Array programming with NumPy. Nature 585, 357-362 (2020). 125. Millman, K. J., Aivazis, M. Python for scientists and engineers. Computing in Science and Engineering 13, 9-12 (2011). 126. Tjallingii, R., Röhl, U., Kölling, M., Bickert, T. Influence of the water content on X‐ray fluorescence core‐scanning measurements in soft marine sediments. Geochemistry, Geophysics, Geosystems 8, (2007). 127. Böning, P., Bard, E., Rose, J. Toward direct, micron‐scale XRF elemental maps and quantitative profiles of wet marine sediments. Geochemistry, Geophysics, Geosystems 8, (2007). 128. Jansen, J., Van der Gaast, S., Koster, B., Vaars, A. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Marine geology 151, 143-153 (1998). 129. Max, L., et al. Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years. Paleoceanography 27, n/a-n/a (2012). 130. Benz, V. a. E. O. a. G. R. a. L. F. a. T. R. Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean. Quaternary Science Reviews 146, 216--237 (2016). 131. Lamy, F., et al. Increased Dust Deposition in the Pacific Southern Ocean During Glacial Periods. Science 343, 403-407 (2014). 132. Ullermann, J., Lamy, F., Ninnemann, U., Lembke‐Jene, L., Gersonde, R., Tiedemann, R. Pacific‐Atlantic Circumpolar Deep Water coupling during the last 500 ka. Paleoceanography 31, 639-650 (2016). 133. Wang, W., et al. Dating North Pacific Abyssal Sediments by Geomagnetic Paleointensity: Implications of Magnetization Carriers, Plio-Pleistocene Climate Change, and Benthic Redox Conditions. Frontiers in Earth Science, 577 (2021). 134. Nürnberg, D. RV SONNE Fahrtbericht / Cruise Report SO264 - SONNE-EMPEROR: The Plio/Pleistocene to Holocene development of the pelagic North Pacific from surface to depth – assessing its role for the global carbon budget and Earth ́s climate, Suva (Fiji) – Yokohama (Japan), 30.6. – 24.8.2018. in GEOMAR Report). GEOMAR Helmholtz-Zentrum für Ozeanforschung (2018). 135. Chao, W.-S., et al. Glacial-interglacial variations in productivity and carbonate deposition in the Northwest Pacific during the last 500,000 years. Frontiers in Earth Science, (In prep.). 136. Clifford, G. Chapter 15-BLIND SOURCE SEPARATION: Principal & Independent Component Analysis. in Biomedical Signal and Image Processing). MIT Electrical Engineering and Computer Science (2008). 137. Geurts, P., Ernst, D., Wehenkel, L. Extremely randomized trees. Machine learning 63, 3-42 (2006). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86001 | - |
| dc.description.abstract | 解析地球系統的運作機制能夠促進我們在科學以及人類社會上的進步與永續,其中一項重要研究材料為記錄著短中長期氣候、地形、生物與人類活動訊號的沉積物紀錄。結合地球科學與電腦科學兩大領域的進展,本論文展示三項解決常見於地球系統中沉積學與古海洋學研究之問題的跨領域研究。第一項研究彙整多種採自德國瓦登海域之岩心掃描數據進行數據分析以解析不同沉積相之特性,結果顯示這些沉積物紀錄中的掃描數據確實於不同沉積相中具有不同之特徵,故從中我們得知沉積學家的觀察能夠再現於掃描數據。於是第二項研究「沉積相自動辨識」接續進行,所挑選之岩心及沉積相數量較第一項研究顯著提升,目標在於透過機器學習技術建立能藉由讀取X光螢光岩心掃描儀(以下簡稱XRF)所產生之元素資料進行沉積物之沉積相辨識的模型。研究流程將一系列之特徵轉換與機器學習演算法進行組合測試並模擬出類似沉積學家觀察模式之資料轉換,透過融入沉積學原理特製化之模型能力檢驗,獲得一組最佳化具78%準確度之模型。除了具沉積相辨識能力,該模型亦可標記出模型較不具信心之沉積物區段以便予沉積學家投入其專業進行判斷,如此便可提升辨識量能且不影響整體品質。第三項研究則著重於產生高解析度之沉積物定量化學性質(碳酸鈣及總有機碳),本方法透過機器學習演算法直接對XRF所產出之原始光譜數據以及定量數據進行非線性迴歸建模,從此便可使用該模型對快速產生之高解析XRF數據進行量化求得碳酸鈣及總有機碳之分佈;此外,本研究納入太平洋高緯度多處之沉積物紀錄以突破過去常受限於單一井位或地區之應用性,其碳酸鈣及總有機碳量化準確度(R2)分別為0.96與0.78。總結來說,機器學習技術能夠提升資料分析以及自動化之能力,而岩心掃描技術則提供快速且高解析度之多項測量,本論文提供結合這兩種技術之方法藍圖以期能夠突破過去沉積物研究常見之費工耗時與主觀影響,進而獲得更全面之沉積物紀錄資訊。 | zh_TW |
| dc.description.abstract | Studying the mother Earth to understand and predict its system process facilitates the evolution of science and human society toward a progressive and sustainable stage. One of the key research materials is sediment archive, which records various short-and long-term historical information, such as climatic, biological, geomorphological and human activity variations. With the progress in geoscience and computer science, this thesis presents three interdisciplinary approaches to solve practical problems in sedimentological and paleoceanographical investigations. The first study compiles different core scanning data (magnetic susceptibility, X-ray computed tomography, elemental profiles, digital photography) to characterize a priori classified sediment core sections recovered from the Wadden Sea region. The results confirm that the description of human-recognized sediment facies can be reproduced using the scanning data, which gives a promising hint to a further step: automatic sediment facies classification. The second study increases the data scale by covering more core sections and sediment facies to develop a machine learning (ML) model that classifies sediments into facies by reading elemental profiles acquired from X-ray fluorescence (XRF) core scanning. A series of feature engineering and ML algorithms are tested to find the optimal solution. As a result, a simple but powerful model is proposed to simulate sedimentologists’ observational behavior and have promising performance (78% accuracy), which is supported by a tailor-made evaluation involving sedimentary knowledge. Furthermore, the model can highlight critical sections of sediments requiring sedimentologists’ expertise. This provides an increased capability of classification without losing accuracy. The third study focuses on obtaining cost-efficient high-resolution bulk chemistry measurement (CaCO3 and total organic carbon) by quantifying XRF spectra using ML. This novel approach of using XRF spectra directly and enhanced regression power of ML eliminates manual bias and increases input information. Meanwhile, the previous limitation of data coverage is lifted by including multi-regional data (high latitude sectors of Pacific Ocean). The outcome is carefully evaluated using cross-validation, test set, and case study, with R2 of CaCO3: 0.96 and TOC: 0.78 from the test set. In conclusion, ML increases the capability of data analysis and automation. Sediment core scanning provides thorough but rapid measurement in high spatial resolution. This thesis offers generalizable methodological blueprints for integrating these two techniques to release the wealth of sedimentary information from the shackles of expensive and observer-dependent data in the past. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:32:20Z (GMT). No. of bitstreams: 1 U0001-1209202218360200.pdf: 10824119 bytes, checksum: 3a9cc95e27214ef440da60475c98cc96 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 I Acknowledgements II Abstract III Zusammenfassung V 摘要 VII 1. Introduction 1 1.1. Sediment archives 1 1.2. Primary techniques 3 1.2.1. Sediment core scanning 3 1.2.2. Machine learning 3 1.3. Objective 5 2. Study I: Trials of core scanning techniques 7 2.1. Introduction 10 2.2. Methods and materials 13 2.2.1. Coring 13 2.2.2. Lithology description 14 2.2.3. Down-core scanning techniques 14 2.3. Results 18 2.3.1. Reducing dimensionality of elemental intensities 18 2.3.2. Facies description 19 2.3.3. Collective results of scanning techniques 24 2.4. Discussion 27 2.4.1. Implications of principal component analysis 27 2.4.2. Facies characterisation 28 2.5. Limits and outlook 32 2.6. Conclusions 35 2.7. Acknowledgements 36 2.8. Supplementary materials 37 3. Study II: Automatic sediment facies classification 45 3.1. Introduction 47 3.2. Results 51 3.2.1. Contribution of feature engineering 51 3.2.2. Misclassification of the model 54 3.2.3. Highlighting critical segments 57 3.3. Discussion 59 3.4. Methods 61 3.4.1. Data acquisition 61 3.4.2. Feature engineering 61 3.4.3. Model building and evaluation 63 3.5. Acknowledgements 65 3.6. Supplementary materials 66 3.6.1. Material and methods 66 3.6.2. Grid searching results 69 3.6.3. Test set results 71 4. Study III: Bulk chemistry quantification 74 4.1. Introduction 76 4.1.1. Importance and limitations of bulk geochemistry 76 4.1.2. Advantages of XRF core scanning and its quantification 77 4.2. Results 81 4.2.1. Determination of optimal models 81 4.2.2. Evaluations of test set and case study 81 4.2.3. Outcome: quantified data of CaCO3 and TOC 84 4.3. Discussion 84 4.4. Guidelines for applications 86 4.5. Conclusions 87 4.6. Materials and methods 88 4.6.1. Sediment cores and bulk measurements 88 4.6.2. Setting of the Avaatech XRF scanning and data compilation 89 4.6.3. Pilot test 90 4.6.4. Model training and evaluation 91 4.7. Acknowledgments 93 4.8. Supplementary materials 94 4.8.1. Detailed grid search results 94 4.8.2. Info and exported data 96 5. Concluding remarks and outlook 98 5.1. Trials of core scanning techniques 98 5.2. Automatic sediment facies classification 98 5.3. Bulk chemistry quantification 99 6. References 101 | |
| dc.language.iso | en | |
| dc.subject | 太平洋 | zh_TW |
| dc.subject | 沉積物岩心掃描技術 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 總化學成分量化 | zh_TW |
| dc.subject | 瓦登海 | zh_TW |
| dc.subject | 沉積相自動辨識 | zh_TW |
| dc.subject | Pacific Ocean | en |
| dc.subject | machine learning | en |
| dc.subject | sediment core scanning | en |
| dc.subject | automatic sediment facies classification | en |
| dc.subject | bulk chemistry quantification | en |
| dc.subject | Wadden Sea | en |
| dc.title | 利用機器學習探討沉積學與古海洋學研究框架下之自動化沉積相辨識與高解析地球化學量化應用 | zh_TW |
| dc.title | Machine learning techniques applied to sediment core scanning data in the framework of sedimentological and paleoceanographical investigations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-5492-1986 | |
| dc.contributor.advisor-orcid | 劉雅瑄(0000-0003-3902-9786) | |
| dc.contributor.coadvisor | Bernd Zolitschka (Bernd Zolitschka) | |
| dc.contributor.coadvisor-orcid | Bernd Zolitschka (0000-0001-8256-0420) | |
| dc.contributor.oralexamcommittee | 林軒田(Hsuan-Tien Lin),Christian Ohlendorf(Christian Ohlendorf),Stella Birlo(Stella Birlo) | |
| dc.contributor.oralexamcommittee-orcid | 林軒田(0000-0003-2968-0671) | |
| dc.subject.keyword | 機器學習,沉積物岩心掃描技術,沉積相自動辨識,總化學成分量化,瓦登海,太平洋, | zh_TW |
| dc.subject.keyword | machine learning,sediment core scanning,automatic sediment facies classification,bulk chemistry quantification,Wadden Sea,Pacific Ocean, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU202203318 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-26 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1209202218360200.pdf | 10.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
