請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85999完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃筱鈞(Hsiao-Chun Huang) | |
| dc.contributor.author | Song-Cheng Wang | en |
| dc.contributor.author | 王崧丞 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:32:15Z | - |
| dc.date.copyright | 2022-10-14 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-19 | |
| dc.identifier.citation | 1. Mimee, M., Nadeau, P., Hayward, A., Carim, S., Flanagan, S., Jerger, L., Collins, J., McDonnell, S., Swartwout, R., Citorik, R. J., Bulović, V., Langer, R., Traverso, G., Chandrakasan, A. P., Lu, T. K. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science, 360(6391), 915-918 (2018). 2. Purnick, P. E., & Weiss, R. The second wave of synthetic biology: from modules to systems. Nature Reviews Molecular Cell Biology, 10(6), 410–422 (2009). 3. Monod, J., & Jacob, F. General Conclusions: Teleonomic Mechanisms in Cellular Metabolism, Growth, and Differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 26, 389–401 (1961). 4. Patil, M., & Dhar, P. K. A Brief Introduction to Synthetic Biology. Systems and Synthetic Biology, 229–240 (2014). 5. McAdams, H., & Shapiro, L. Circuit simulation of genetic networks. Science, 269(5224), 650–656 (1995). 6. Westerhoff, H. V., & Palsson, B. O. The Evolutionary History of Quorum-Sensing Systems in Bacteria. Molecular Biology and Evolution, 21(8), 1612 (2004). 7. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339-342 (2000). 8. Elowitz, M. B., & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335–338 (2000). 9. Becskei, A., & Serrano, L. Engineering stability in gene networks by autoregulation. Nature, 405(6786), 590–593 (2000). 10. Becskei, A., Séraphin, B., & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. The EMBO Journal, 20(10), 2528–2535 (2001). 11. Guet, C. C., Elowitz, M. B., Hsing, W., Leibler S. Combinatorial Synthesis of Genetic Networks. Science, 296(5572), 1466–1470 (2002). 12. Anderson, J. C., Voigt, C. A., & Arkin, A. P. Environmental signal integration by a modular AND gate. Molecular Systems Biology, 3(1), 133 (2007). 13. Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., & Collins, J. J. Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 22(7), 841–847 (2004). 14. Bayer, T. S., & Smolke, C. D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotechnology, 23(3), 337–343 (2005). 15. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature, 434(7037), 1130–1134 (2005). 16. Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., & Collins, J. J. Synthetic Gene Networks That Count. Science, 324(5931), 1199–1202 (2009). 17. Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S., & Hasty, J. A fast, robust and tunable synthetic gene oscillator. Nature, 456(7221), 516–519 (2008). 18. Bashor, C. J., Helman, N. C., Yan, S., & Lim, W. A. Using Engineered Scaffold Interactions to Reshape MAP Kinase Pathway Signaling Dynamics. Science, 319(5869), 1539–1543 (2008). 19. Macía, J., Posas, F., & Solé, R. V. Distributed computation: the new wave of synthetic biology devices. Trends in Biotechnology, 30(6), 342–349 (2012). 20. Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellén, J., Peeters, T., Hohmann, S., de Nadal, E., Posas, F., & Solé, R. Distributed biological computation with multicellular engineered networks. Nature, 469(7329), 207–211 (2010). 21. Amos, M. Population-based microbial computing: a third wave of synthetic biology? International Journal of General Systems, 43(7), 770–782 (2014). 22. Torii, K. U. Two-dimensional spatial patterning in developmental systems. Trends in Cell Biology, 22(8), 438-446 (2012). 23. Goehring, N.W. PAR polarity: from complexity to design principles. Exp Cell Res, 328(2), 258-266 (2014). 24. Lang, C. F., Munro, E. The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development, 144(19), 3405-3416 (2017). 25. Harris, T. J. C. Protein clustering for cell polarity: Par-3 as a paradigm. F1000Res, 6, 1620 (2017). 26. Munro E. Protein Clustering Shapes Polarity Protein Gradients. Dev Cell, 42(4), 309-311 (2017). 27. Rhyu, M. S., Jan, L. Y., & Jan, Y. N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76(3), 477-91(1994). 28. Laloux, G., Jacobs-Wagner, C. How do bacteria localize proteins to the cell pole? J Cell Sci, 127(Pt 1), 11-19 (2014). 29. Jana, N. K., Roy, S., Bhattacharyya, B., Mandal, N. C. Amino acid changes in the repressor of bacteriophage lambda due to temperature-sensitive mutations in its cI gene and the structure of a highly temperature-sensitive mutant repressor. Protein Eng, 12(3), 225-33 (1999). 30. Grant, P. K., Szep, G., Patange, O., Halatek, J., Coppard, V., Csikász-Nagy, A., Haseloff, J., Locke, J. C. W., Dalchau, N., Phillips, A. Interpretation of morphogen gradients by a synthetic bistable circuit. Nat Commun, 11(1), 5545 (2020). 31. Taly, V., Pekin, D., Abed, A. E., Laurent-Puig, P. Detecting biomarkers with microdroplet technology. Trends Mol Med, 18(7), 405-416 (2012). 32. Wang, A., Abdulla, A., Ding, X. Microdroplets-on-chip: A review. Proc Inst Mech Eng H, 233(7), 683-694 (2019). 33. Bowman, E. K., Alper, H. S. Microdroplet-Assisted Screening of Biomolecule Production for Metabolic Engineering Applications. Trends Biotechnol, 38(7), 701-714 (2020). 34. Alam, J. M., Noda, N. N. In vitro reconstitution of autophagic processes. Biochem Soc Trans, 48(5), 2003-2014 (2020). 35. Osawa, M., Anderson, D.E., Erickson, H. P. Reconstitution of contractile FtsZ rings in liposomes. Science, 320(5877), 792-794 (2008). 36. Godino, E., López, J. N., Foschepoth, D., Cleij, C., Doerr, A., Castellà, C. F., Danelon, C. De novo synthesized Min proteins drive oscillatory liposome deformation and regulate FtsA-FtsZ cytoskeletal patterns. Nat Commun, 10(1), 4969 (2019). 37. Camsund, D., Heidorn, T., Lindblad, P. Design and analysis of LacI-repressed promoters and DNA-looping in a cyanobacterium. J Biol Eng, 8(1), 4 (2014). 38. Lacatena, R. M., Banner, D. W., Castagnoli, L., Cesareni, G. Control of initiation of pMB1 replication: Purified rop protein and RNA I affect primer formation in vitro. Cell, 37(3), 1009-1014 (1984). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85999 | - |
| dc.description.abstract | Mutual inhibition 長久以來都被認為是建立細胞不對稱性的核心機制之一,而在細胞內建立濃度梯度是最關鍵的過程。過去有許多研究透過合成生物學的方法建構 toggle switch 系統,並觀察到記憶性的行為,但未曾觀察到有濃度梯度的形成,我們推測是因為蛋白質擴散的速率太快所導致,因此必須限制蛋白質的擴散速率才有可能觀察到濃度梯度的形成。因此我們挑選了正交性的抑制子來建立傳統的 toggle switch 系統,以及利用 DivIVA 建立擴散受限制的 toggle switch 系統,若上述基因建構完成,大腸桿菌表現的性狀與我們預期的相同,則會將質體送入非細胞的微滴系統中更進一步得觀察性狀的表現。在此論文中,我們測試了 TetR, SrpR, LmrA 和 lambda 等四種抑制子,並以他們構建了完整的 toggle switch 系統,但並非所有的基因組都表現出理想中的性狀,SrpR 啟動子的強度偏弱,不足以產生足量的下游基因產物,導致細胞無法呈現出 DivIVA 應有的雙極性狀,且 SrpR 抑制子會對大腸桿菌細胞造成極大的代謝負擔,甚至導致質體的基因突變,另外, lambda 抑制子也如同 SrpR 抑制子會產生大腸桿菌的代謝負擔,導致基因組的表現也出現異常,而以目前的結果看來 TetR-LmrA 這組基因組的性狀最接近我們理想中的型態,能表現出足量的下游基因產物,行成 DivIVA 應有的雙極性狀,TetR 抑制子和 LmrA 抑制子也都能有效得抑制其對應的啟動子,再者,其中的 TetR 基因組能被 IPTG 誘導起來並有記憶性的行為。我們推測系統目前可能存在的問題是抑制子表現量過高造成的代謝異常,未來研究方向會致力於降低質體的拷貝數與調整核糖體結合位點的強度去降低整體細胞中的代謝負擔,使細胞表現出我們預期中的性狀。 | zh_TW |
| dc.description.abstract | Mutual inhibition has long been considered to be one of the central mechanisms for the establishment of asymmetry in cells, and the establishment of concentration gradients in cells is the most critical process. In the past, many studies have used synthetic biology methods to construct toggle switch and observed memory behavior, but the formation of concentration gradients has not been observed. We speculate that the rate of diffusion is too fast and it must be limited. We therefore picked orthogonal repressors to build traditional toggles and DivIVA as the fusion protein to build diffusion-limited toggle systems. If all of these genetic constructs in E.coli form the expected characteristics, we will put these plasmids into the microdroplet system to further observe the spatial patterns. In this thesis, four repressors, TetR, SrpR, LmrA and lambda, were tested and used to construct a complete toggle system. However, not all genetic circuits exhibited the expected behaviors. The strength of the SrpR promoter was too weak to produce sufficient downstream gene products, so that cells could not form the bipolar characteristics that DivIVA should have. In addition, the SrpR repressor caused a great metabolic burden in E. coli, which even led to plasmid mutation. On the other hand, the lambda repressor also caused metabolic burden in E. coli like the SrpR repressor, resulting in abnormal performance. Based on the current results, it seems that the traits of the TetR-LmrA pair were closest to our ideal type, which could produce sufficient downstream gene products to form the bipolar characterization of DivIVA. TetR repressor and LmrA repressor could also effectively inhibit their corresponding promoters. Furthermore, the TetR genetic circuit could be induced by IPTG and have memory behaviors. We speculate that the current problem of our system is the metabolic burden caused by the overexpression of the repressors. Our future research direction will focus on reducing the copy number of the plasmid and adjusting the strength of the ribosome binding site to reduce the metabolic burden in the cell. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:32:15Z (GMT). No. of bitstreams: 1 U0001-0509202222435100.pdf: 4870373 bytes, checksum: 7e6d7efb120cef191542bd75ce8ee88c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii List of Abbreviations v Contents vi Figure list vii Table list x 1. Introduction 1 2. Methods 9 2.1 Molecular Cloning 9 2.2 Plasmid purification 9 2.3 PCR 10 2.3.1 Reaction condition & Thermocycling condition 10 2.3.2 PCR clean up (I) 11 2.3.3 PCR clean up (II) 12 2.4 Restriction enzymatic digestion 12 2.4.1 Digestion condition 12 2.4.2 Agarose gel electrophoresis 13 2.4.3 Gel purification 13 2.5 DNA ligation 14 2.5.1 T4 enzymatic ligation 14 2.5.2 Gibson assembly 14 2.6 Chemical transformation 15 2.7 Fluorescent microscopy 15 3. Results and discussion 17 3.1 Genetic design 17 3.2 Characterization of SrpR-TetR toggle switch 17 3.3 Characterization of SrpR-TetR toggle switch with degradation tag 19 3.4 Characterization of the double lac operator (lacO) system 21 3.5 Characterization of TetR repression(I) 22 3.6 Characterization of LmrA-TetR toggle switch 23 3.7 Characterization of LmrA-TetR toggle switch with degradation tag 24 3.8 Characterization of TetR repression(II) 26 3.9 Characterization of LmrA repression 26 3.10 Characterization of memory events in our toggle system 27 3.11 Characterization of Lambda-TetR toggle switch with degradation tag 28 4. Conclusion and future work 30 5. Figure 32 6. Reference 98 | |
| dc.language.iso | en | |
| dc.subject | toggle switch | zh_TW |
| dc.subject | 蛋白質濃度梯度 | zh_TW |
| dc.subject | 細胞不對稱性 | zh_TW |
| dc.subject | 記憶性行為 | zh_TW |
| dc.subject | 微滴系統 | zh_TW |
| dc.subject | 大腸桿菌 | zh_TW |
| dc.subject | 相互抑制系統 | zh_TW |
| dc.subject | protein concentration gradients | en |
| dc.subject | E.coli | en |
| dc.subject | microdroplet system | en |
| dc.subject | memory behavior | en |
| dc.subject | toggle switch | en |
| dc.subject | mutual inhibition | en |
| dc.subject | cellular asymmetry | en |
| dc.title | 建構擴散受限制的相互抑制基因網絡 | zh_TW |
| dc.title | Construction of diffusion-limited mutual inhibition circuits | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳亘承(Hsuan-Chen Wu),涂熊林(Hsiung-Lin Tu) | |
| dc.subject.keyword | 相互抑制系統,細胞不對稱性,蛋白質濃度梯度,toggle switch,記憶性行為,微滴系統,大腸桿菌, | zh_TW |
| dc.subject.keyword | mutual inhibition,cellular asymmetry,protein concentration gradients,toggle switch,memory behavior,microdroplet system,E.coli, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU202203177 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-21 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-30 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0509202222435100.pdf | 4.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
