Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85995
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任(Yuh-Renn Wu)
dc.contributor.authorKung-Chi Hsuen
dc.contributor.author許公祈zh_TW
dc.date.accessioned2023-03-19T23:32:05Z-
dc.date.copyright2022-09-27
dc.date.issued2022
dc.date.submitted2022-09-21
dc.identifier.citation[1] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nature photonics, vol. 8, no. 4, p. 326-332, 2014. [2] D. Di, L. Yang, J. M. Richter, L. Meraldi, R. M. Altamimi, A. Y. Alyamani, D. Credgington, K. P. Musselman, J. L. MacManus-Driscoll, R. H. Friend, “Efficient triplet exciton fusion in molecularly doped polymer light‐emitting diodes,” Advanced Materials, vol. 29, no. 13, p. 1605987, 2017. [3] C. Murawski, K. Leo, M. C. Gather, “Efficiency roll‐off in organic light‐emitting diodes,” Advanced Materials, vol. 25, no. 47, p. 6801-6827, 2013. [4] J. Y. Huang, M. T. Wang, G. Y. Chen, J. Y. Li, S. P. Chen, J. H. Lee, T. L. Chiu, Y. R. Wu, “Analysis of the triplet exciton transfer mechanism at the heterojunctions of organic light-emitting diodes,” Journal of Physics D: Applied Physics, vol. 53, no. 34, p. 345501, 2020. [5] H. Y. Lin, (2021). “Study on High Efficiency Blue Fluorescent Organic Light-emitting Diodes,” Unpublished master’s thesis, National Taiwan University. [6] C. C. Lee, M. Y. Chang, P. T. Huang, Y. C. Chen, Y. Chang, S. W. Liu, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” Journal of applied physics, vol. 101, no. 11, p. 114501, 2007. [7] I. S. Park, S. R. Park, D. Y. Shin, J. S. Oh, W. J. Song, J. H. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host–guest systems,” Organic Electronics, vol. 11, no. 2, p. 218-226, 2010. [8] R. Coehoorn, W. F. Pasveer, P. A. Bobbert, M. A. J Michels, “Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder,” Physical Review B, vol. 72, no. 15, p. 155206, 2005. [9] W. C. Germs, J. J. M. Van der Holst, S. L. M. Van Mensfoort, P. A. Bobbert, R. Coehoorn, “Modeling of the transient mobility in disordered organic semiconductors with a Gaussian density of states,” Physical Review B, vol. 84, no. 16, p. 165210, 2011. [10] H. Bässler, “Charge transport in disordered organic photoconductors. A Monte Carlo simulation study,” Physica Status Solidi B (Basic Research); (Germany), vol. 175 no. 1, 1993. [11] M. Bouhassoune, S. L. M. Van Mensfoort, P. A. Bobbert, R. Coehoorn, “Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder,” Organic Electronics, vol. 10, no. 3, p. 437-445, 2009. [12] S. Cherian, C. Donley, D. Mathine, L. LaRussa, W. Xia, N. Armstrong, “Effects of field dependent mobility and contact barriers on liquid crystalline phthalocyanine organic transistors,” Journal of applied physics, vol. 96, no. 10, p. 5638-5643, 2004. [13] J. Mort, G. Pfister, (Eds.). “Electronic properties of polymers,” John Wiley & Sons, 1982. 13 [14] L. Friedman, M. Pollak, “The Hall effect in the variable-range-hopping regime,” Philosophical Magazine B, vol. 44, no. 4, p. 487-507, 1981. [15] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Applied Physics Letters, vol. 79, no. 2, p. 156-158, 2001. [16] G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, K. Leo, “Harvesting triplet excitons from fluorescent blue emitters in white organic light‐emitting diodes,” Advanced Materials, vol. 19, no. 21, p. 3672-3676, 2007. [17] S. Reineke, K. Walzer, K. Leo, “Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters,” Physical Review B, vol. 75, no. 12, p. 125328, 2007. [18] D. Song, S. Zhao, Y. Luo, H. Aziz, “Causes of efficiency roll-off in phosphorescent organic light emitting devices: Triplet-triplet annihilation versus triplet-polaron quenching,” Applied Physics Letters, vol. 97, no. 24, p. 268, 2010. [19] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gügel, K. Müllen, “Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures,” Physical Review B, vol. 59, no. 23, p. 15346, 1999. [20] T. Stübinger, W. Brütting, “Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells,” Journal of Applied Physics, vol. 90, no. 7, p. 3632-3641, 2001. [21] C. L. Yang, Z. K. Tang, W. K. Ge, J. N. Wang, Z. L. Zhang, X. Y. Jian, “Exciton diffusion in light-emitting organic thin films studied by photocurrent spectra,” Applied physics letters, vol. 83, no. 9, p. 1737-1739, 2003. [22] V. I. Arkhipov, P. Heremans, E. V. Emelianova, H. Baessler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Physical Review B, vol. 71, no. 4, p. 045214, 2005. [23] R. A. Marcus, N. Sutin, “Electron transfers in chemistry and biology,” Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, vol. 811, no. 3, p. 265-322, 1985. [24] A. Köhler, H. Bässler, “What controls triplet exciton transfer in organic semiconductors?,” Journal of Materials Chemistry, vol. 21, no. 12, p. 4003-4011, 2011. [25] B. Kriete, J. Lüttig, T. Kunsel, P. Malý, T. L. C. Jansen, J. Knoester, T. Brixner, M. S. Pshenichnikov, “Interplay between structural hierarchy and exciton diffusion in artificial light harvesting,” Nature communications, vol. 10, no. 1, p. 1-11, 2019. [26] Y. H. Chen, C. C. Lin, M. J. Huang, K. Hung, Y. C. Wu, W. C. Lin, R. W. Chen-Cheng, H. W. Lin, C. H. Cheng, “Superior upconversion fluorescence dopants for highly efficient deep-blue electroluminescent devices,” Chemical science, vol. 7, no. 7, p. 4044-4051, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85995-
dc.description.abstract我們專注於模擬具有雙發光層結構的有機發光二極體。因為模擬的有機發光二極體的發光層具有三重態-三重態融合和高能量傳輸率的特點,因此可以實現高量子效率。為了能完整地模擬發光層中單重態和三重態激子的物理機制和發光機制,我們採用了多種公式和方法,經過不斷的修正和與實驗數據的比較,最終得到了一個與實驗數據吻合的完整模型。在雙層發光層的裝置中,電子電洞在DMPPP為主體DPaNIF為客體的發光層複合,產生單重態激子跟三重態激子,單重態激子直接放光,三重態激子則是流到隔壁以NPAN為主體DPaNIF為客體的發光層進行三重態-三重態融合,生成單重態激子隨即放光,因為有單重態激子的直接放光,又有三重態-三重態融合生成單重態激子進行延遲放光,因此雙發光層裝置的效率比單發光層裝置還要好。影響三重態-三重態融合的關鍵因素為電子電洞與三重態激子之間的交互作用,隨著電壓加大,電子電洞與三重態激子間的交互作用也越發劇烈,因此模擬的雙發光層裝置的效率離理想狀態的62.5%還有一段差距,未來還有挑戰需要克服。zh_TW
dc.description.abstractWe focus on simulating organic light-emitting diodes (OLED) with a double-emitting layer (EML) structure. Because the EML of the simulated OLED is characterized by triplet-triplet fusion (TTF) and a high energy transfer rate, high quantum efficiency can be achieved. To completely simulate the physical and light-emitting mechanisms of singlet and triplet excitons in the EML, we adopted a variety of formulas and methods. After constant revision and comparison with the experimental data, we finally obtained a consistent with the experimental data—complete model. In the double-EML device, electrons and holes recombine in the EML with DMPPP as the host and DPaNIF as the guest to generate singlet excitons and triplet excitons. The singlet excitons emit light directly. The triplet excitons flow to the EML with NPAN as the host and DPaNIF as the guest for TTF to generate singlet excitons and then emit light. Because of the direct emission of singlet excitons, TTF generates an extra singlet exciton. Furthermore, the excitons perform delayed emission, so the efficiency of the double-EML device is better than that of the single-EML device. The interaction between electron holes and triplet excitons is critical to TTF. As the voltage increases, the interaction between electron holes and triplet excitons becomes more intense. Therefore, the simulated efficiency of the double-EML device is still a long way from the ideal 62.5%, and there are still challenges to be overcome in the future.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:32:05Z (GMT). No. of bitstreams: 1
U0001-1309202212423400.pdf: 5978730 bytes, checksum: dc25cde221e3e8dbca3f6a0c561342e1 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContent 誌謝 ii 摘要 iii Abstract iv List of figures ix List of tables xiv 1 Introduction 1 1.1 Motivation 1 1.2 Introduction of OLED materia 3 1.3 Triplet exciton transfer mechanism at the heterojunctions of OLEDS 6 2 Methodology 8 2.1 Overview 8 2.2 OLED electrical simulation 9 2.3 Physical mechanism of excitons in OLED 11 3 Single emitting layer device 14 3.1 DMPPP-based single EML device electrical properties 14 3.1.1 Band diagram simulation 17 3.1.2 IV curve fitting 18 3.1.3 Radiative and non-radiative recombination simulation 19 3.1.4 Electron and hole distribution simulation 20 3.1.5 Mobility in DMPPP-based single EML device simulation 22 3.2 DMPPP-based single EML device exciton properties 24 3.2.1 Singlets and triplets distribution simulation 26 3.2.2 IQE fitting 29 3.3 NPAN-based single EML device electrical properties 34 3.3.1 Band diagram simulation 37 3.3.2 IV curve fitting 38 3.3.3 Radiative and non-radiative recombination simulation 39 3.3.4 Electron and hole distribution simulation 40 3.3.5 Mobility in NPAN-based single EML device 41 3.4 NPAN-based single EML device exciton properties 43 3.4.1 Singlets and triplets distribution simulation 45 3.4.2 IQE fitting 48 3.4.3 TrEL spectrum fitting 51 4 Double emitting layer device 54 4.1 Double-EML device electrical properties 54 4.1.1 Band diagram simulation 57 4.1.2 IV curve fitting 59 4.1.3 Radiative and non-radiative recombination simulation 60 4.1.4 Electron and hole distribution simulation 61 4.1.5 Mobility in Double-EML device 62 4.2 Double-EML device exciton properties 63 4.2.1 Singlets and triplets distribution simulation 65 4.2.2 IQE fitting 71 4.2.3 TrEL spectrum fitting 74 Conclusion 77 Reference 79
dc.language.isoen
dc.subject器件建模與實驗驗證zh_TW
dc.subject有機發光二極體zh_TW
dc.subject三重態-三重態融合zh_TW
dc.subject雙層發光層zh_TW
dc.subject三重態激子轉移zh_TW
dc.subject量子效率zh_TW
dc.subjectdouble light-emitting layeren
dc.subjectdevice modeling and experimental verificationen
dc.subjectquantum efficiencyen
dc.subjecttriplet exciton transferen
dc.subjectOrganic light-emitting diodeen
dc.subjecttriplet-triplet fusionen
dc.title單層及雙層發光層有機發光二極體模擬zh_TW
dc.titleSingle emitting layer and double emitting layer organic light-emitting diodes simulationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李君浩(Jiun-Haw Lee),邱天隆(Tien-Lung Chiu)
dc.subject.keyword有機發光二極體,三重態-三重態融合,雙層發光層,三重態激子轉移,量子效率,器件建模與實驗驗證,zh_TW
dc.subject.keywordOrganic light-emitting diode,triplet-triplet fusion,double light-emitting layer,triplet exciton transfer,quantum efficiency,device modeling and experimental verification,en
dc.relation.page85
dc.identifier.doi10.6342/NTU202203339
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
dc.date.embargo-lift2022-09-27-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1309202212423400.pdf5.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved