請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85993完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂宥蓉 | zh_TW |
| dc.contributor.advisor | Yu-Jung Lu | en |
| dc.contributor.author | 朱育正 | zh_TW |
| dc.contributor.author | Yu-Cheng Chu | en |
| dc.date.accessioned | 2023-03-19T23:31:59Z | - |
| dc.date.available | 2025-09-02 | - |
| dc.date.copyright | 2022-09-23 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Song, M.; Wang, D.; Peana, S.; Choudhury, S.; Nyga, P.; Kudyshev, Z. A.; Yu, H.; Boltasseva, A.; Shalaev, V. M.; Kildishev, A. V. Applied Physics Reviews 2019, 6, (4), 041308.
2. Roberts, A. S.; Pors, A.; Albrektsen, O.; Bozhevolnyi, S. I. Nano Letters 2014, 14, (2), 783-787. 3. Gu, Y.; Zhang, L.; Yang, J. K.; Yeo, S. P.; Qiu, C.-W. Nanoscale 2015, 7, (15), 6409-6419. 4. Gildas, F.; Dan, Y. Journal of Nanophotonics 2019, 13, (2), 020901. 5. Askes, S. H.; Schilder, N. J.; Zoethout, E.; Polman, A.; Garnett, E. C. Nanoscale 2019, 11, (42), 20252-20260. 6. Guler, U.; Shalaev, V. M.; Boltasseva, A. Materials Today 2015, 18, (4), 227-237. 7. Askes, S. H. C.; Schilder, N. J.; Zoethout, E.; Polman, A.; Garnett, E. C. Nanoscale 2019, 11, (42), 20252-20260. 8. Tillmann, W.; Dias, N. F. L.; Stangier, D.; Tolan, M.; Paulus, M. Thin Solid Films 2019, 669, 65-71. 9. Atwater, H. A. Scientific American 2007, 296, (4), 56-63. 10. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, (5548), 1901-1903. 11. Si, G.; Zhao, Y.; Lv, J.; Lu, M.; Wang, F.; Liu, H.; Xiang, N.; Huang, T. J.; Danner, A. J.; Teng, J. Nanoscale 2013, 5, (14), 6243-6248. 12. Corn, R. M.; Philpott, M. R. The Journal of chemical physics 1984, 80, (10), 5245-5249. 13. Schatz, G. C. Accounts of Chemical Research 1984, 17, (10), 370-376. 14. Moskovits, M.; Suh, J. The Journal of Physical Chemistry 1984, 88, (23), 5526-5530. 15. Veprek, S.; Sarott, F.-A.; Iqbal, Z. Physical Review B 1987, 36, (6), 3344. 16. Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H.; Thio, T.; Wolff, P. A. nature 1998, 391, (6668), 667-669. 17. O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Cancer Letters 2004, 209, (2), 171-176. 18. Kumar, K.; Duan, H.; Hegde, R. S.; Koh, S. C. W.; Wei, J. N.; Yang, J. K. W. Nature Nanotechnology 2012, 7, (9), 557-561. 19. Gifford, D. K.; Hall, D. G. Applied Physics Letters 2002, 81, (23), 4315-4317. 20. Kim, N.-Y.; Hong, S.-H.; Kang, J.-W.; Myoung, N.; Yim, S.-Y.; Jung, S.; Lee, K.; Tu, C. W.; Park, S.-J. RSC Advances 2015, 5, (25), 19624-19629. 21. Kim, J.-B.; Lee, J.-H.; Moon, C.-K.; Kim, S.-Y.; Kim, J.-J. Advanced Materials 2013, 25, (26), 3571-3577. 22. Javidi, B., Optical and digital techniques for information security. Springer Science & Business Media: 2005; Vol. 1. 23. Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, T. F. Materials Science and Engineering: A 2015, 627, 326-332. 24. Augis, J. A.; Lo, C. C.; Pinnel, M. R. Thin Solid Films 1979, 58, (2), 357-363. 25. Wang, H.; Li, J.; Li, K.; Lin, Y.; Chen, J.; Gao, L.; Nicolosi, V.; Xiao, X.; Lee, J.-M. Chemical Society Reviews 2021, 50, (2), 1354-1390. 26. Chen, X.-J.; Struzhkin, V. V.; Wu, Z.; Somayazulu, M.; Qian, J.; Kung, S.; Christensen, A. N.; Zhao, Y.; Cohen, R. E.; Mao, H.-k.; Hemley, R. J. Proceedings of the National Academy of Sciences 2005, 102, (9), 3198-3201. 27. Zerr, A.; Miehe, G.; Riedel, R. Nature Materials 2003, 2, (3), 185-189. 28. Dzivenko, D. A.; Zerr, A.; Boehler, R.; Riedel, R. Solid state communications 2006, 139, (6), 255-258. 29. Si, G.; Zhao, Y.; Liu, H.; Teo, S.; Zhang, M.; Huang, T. J.; Danner, A. J.; Teng, J. Applied Physics Letters 2011, 99, (3), 033105. 30. Yokogawa, S.; Burgos, S. P.; Atwater, H. A. Nano Letters 2012, 12, (8), 4349-4354. 31. Gulbransen, E. A.; Wysong, W. S. The Journal of Physical and Colloid Chemistry 1947, 51, (5), 1087-1103. 32. Cao, W.; Elsayed-Ali, H. E. Materials Letters 2009, 63, (26), 2263-2266. 33. Zamiri, R.; Abbastabar Ahangar, H.; Zakaria, A.; Zamiri, G.; Shabani, M.; Singh, B.; Ferreira, J. M. F. Chemistry Central Journal 2015, 9, (1), 28. 34. Kristensen, A.; Yang, J. K. W.; Bozhevolnyi, S. I.; Link, S.; Nordlander, P.; Halas, N. J.; Mortensen, N. A. Nature Reviews Materials 2016, 2, (1), 16088. 35. Cheng, F.; Gao, J.; Luk, T. S.; Yang, X. Scientific Reports 2015, 5, (1), 11045. 36. Kim, S.; Kim, J.-M.; Park, J.-E.; Nam, J.-M. Advanced Materials 2018, 30, (42), 1704528. 37. Patsalas, P.; Kalfagiannis, N.; Kassavetis, S.; Abadias, G.; Bellas, D. V.; Lekka, C.; Lidorikis, E. Materials Science and Engineering: R: Reports 2018, 123, 1-55. 38. Kumar, M.; Umezawa, N.; Ishii, S.; Nagao, T. ACS Photonics 2016, 3, (1), 43-50. 39. 邱國斌; 蔡定平. 物理雙月刊 (廿十八卷二期) 2006 年 2006, 4. 40. Blakemore, J. S., Solid state physics. Cambridge university press: 1985. 41. Ashcroft, N. W.; Mermin, N. D., Solid state physics. Cengage Learning: 2022. 42. Ashcroft, N. W.; Mermin, N. D. Appendix N 2010, 166, 87. 43. Lucarini, V.; Saarinen, J. J.; Peiponen, K.-E.; Vartiainen, E. M., Kramers-Kronig relations in optical materials research. Springer Science & Business Media: 2005; Vol. 110. 44. Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Physical Review B 2006, 73, (4), 045112. 45. Bakry, M.; Klinkenbusch, L. Adv. Radio Sci. 2018, 16, 23-28. 46. Raether, H. Surface plasmons on smooth and rough surfaces and on gratings 1988, 4-39. 47. Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Physics Reports 2005, 408, (3), 131-314. 48. Wang, F.; Shen, Y. R. Physical review letters 2006, 97, (20), 206806. 49. Jackson, J. D., Classical electrodynamics. Wiley New York: 1977; Vol. 31999. 50. Boltasseva, A.; Naik, G.; West, P.; Ishii, S.; Emani, N.; Shalaev, V. M. In Searching for better plasmonic materials, Winter Colloquium on the Physics of Quantum Electronics 2010, 2010. 51. Blaber, M. G.; Arnold, M. D.; Ford, M. J. Journal of Physics: Condensed Matter 2010, 22, (14), 143201. 52. Zhou, W.; Liang, J.; Zhang, F.; Mu, J.; Zhao, H. Applied Surface Science 2014, 313, 10-18. 53. Depla, D.; Mahieu, S.; Greene, J. E., Chapter 5 - Sputter Deposition Processes. In Handbook of Deposition Technologies for Films and Coatings (Third Edition), Martin, P. M., Ed. William Andrew Publishing: Boston, 2010; pp 253-296. 54. Fujiwara, H., Spectroscopic ellipsometry: principles and applications. John Wiley & Sons: 2007. 55. 蕭宏, 半導體製程技術導論. 台灣培生教育: 2007. 56. 喬宗毅. 2020. 57. Wang, X. Y.; Zhao, F. P.; Wang, J.; Yan, Y. Acta Physica Sinica 2016, 65. 58. Xu, M.; Wang, S.; Yin, G.; Li, J.; Zheng, Y.; Chen, L.-Y.; Jia, Y. Applied Physics Letters 2006, 89. 59. 王中林, 功能与智能材料: 结构演化与结构分析. 科学出版社: 2002. 60. Hu, C.; Zhang, X.; Gu, Z.; Huang, H.; Zhang, S.; Fan, X.; Zhang, W.; Wei, Q.; Zheng, W. Scripta Materialia 2015, 108, 141-146. 61. Hu, C.; Gu, Z.; Wang, J.; Zhang, K.; Zhang, X.; Li, M.; Zhang, S.; Fan, X.; Zheng, W. The Journal of Physical Chemistry C 2014, 118, (35), 20511-20520. 62. Gu, Z.; Hu, C.; Huang, H.; Zhang, S.; Fan, X.; Wang, X.; Zheng, W. Acta Materialia 2015, 90, 59-68. 63. Lindström, J.; Johansson, L. I.; Persson, P. E.; Callens, A.; Law, D. S.; Christensen, A. N. Phys Rev B Condens Matter 1989, 39, (6), 3599-3604. 64. Weinberger, P.; Mallett, C.; Podloucky, R.; Neckel, A. Journal of Physics C: Solid State Physics 1980, 13, (2), 173. 65. Arranz, A. Surface science 2004, 563, (1-3), 1-12. 66. Chourasia, A. R.; Hickman, J. L.; Miller, R. L.; Nixon, G. A.; Seabolt, M. A. International Journal of Spectroscopy 2009, 2009, 439065. 67. Luo, X.; Li, Y.; Yang, H.; Liang, Y.; He, K.; Sun, W.; Lin, H.-H.; Yao, S.; Lu, X.; Wan, L.; Feng, Z. Crystals 2018, 8, (6), 248. 68. Hao, Y.; Mittra, R., FDTD modeling of metamaterials: Theory and applications. Artech house: 2008. 69. Ramanandan, G. K. P.; Ramakrishnan, G.; Kumar, N.; Adam, A. J. L.; Planken, P. C. M. Journal of Physics D: Applied Physics 2014, 47, (37), 374003. 70. Chiao, Z.-Y.; Chen, Y.-C.; Chen, J.-W.; Chu, Y.-C.; Yang, J.-W.; Peng, T.-Y.; Syong, W.-R.; Lee, H. W. H.; Chu, S.-W.; Lu, Y.-J. Nanophotonics 2022, 11, (12), 2891-2899. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85993 | - |
| dc.description.abstract | 無背光彩色顯示器一直是熱門研究主題,其中一種常見的手段是利用奈米結構的電漿子特性,便能做到照光即顯示不同顏色的效果。此外奈米結構的無背光彩色顯示器有望在光電產業上的互補式金屬氧化物半導體元件(Complementary metal-oxide semiconductor device)有著良好的相容性。過去的無背光彩色顯示器1多利用金2、銀3、鋁4 等傳統金屬的奈米結構產生表面電漿共振(Surface plasmon resonance, SPR)或局域電漿共振(Localized surface plasmon resonance, LSPR),然而這些傳統金屬各別有造價高、低熔點、化學性質不穩定等問題,因此材料便需要新的替換選擇,其中過渡金屬氮化物(Transition metal nitride, TMN)便具備價格便宜、高熔點、化學性質穩定、高硬度等優點。
本實驗室長期致力於過渡金屬氮化物的研究,我們發現大部分文獻皆在探討氮化鈦(Titanium nitride, TiN)以及氮化鋯(Zirconium nitride, ZrN)奈米結構的電漿子特性與應用,但對於氮化鉿(Hafnium nitride, HfN)的研究相當稀少。本篇研究即是利用氮化鉿(Hafnium nitride, HfN)具有高介電常數近零(Epsilon near zero, ENZ)5 (~3.1 eV)的電漿子特性,並控制不同奈米結構來改變表面電漿子共振的波段,進而做到不同波段的吸收,最後達到控制顏色的效果,做出具有全彩顯色功能的無背光彩色顯示器。而HfN除了有上述特性以外,它的造價也相對便宜,還具由難熔性質(Refractory),熔點高達三千多度(Tm~3583˚C)、高化學穩定性(Chemical stability)、良好的機械特性(Mechanical hardness)6, 7 8,這些條件使得氮化鉿有望比傳統金屬(例如:金、銀、鋁……)在苛刻的實驗操作具有穩定的光學特性。 本文研究射頻磁控濺鍍成長的氮化鉿薄膜的複數介電常數表現,並利用有限時域差分(Finite-difference time-domain, FDTD)模擬奈米圓盤結構以及光柵結構,控制表面電漿子共振波段(450 nm~850 nm)已達到改變顏色的效果,最終實現氮化鉿無背光彩色顯示器及利用光柵結構的偏振選擇性做出相關應用。此外本文也討論氮化鉿奈米結構與傳統金屬奈米結構在溫度穩定性、環境穩定性的比較。 | zh_TW |
| dc.description.abstract | Backlight-free displays have been a hot research topic for many years. One of the common approaches is to use the plasmonic properties of nanostructures to display different colors. The nanostructure backlight-free displays are expected to be compatible with complementary metal-oxide semiconductor (CMOS) devices in the optoelectronics industry. In the past, the backlight-free displays mostly used the nanostructures of traditional metals such as gold, silver, and aluminum. However, there are some problems like high cost, low melting point, and unstable chemical properties. Therefore, we need the alternative plasmonic materials. Transition metal nitrides (TMN) have the advantages of low price, high melting point, stable chemical properties, high hardness, etc.
Our laboratory has been devoted to the research of transition metal nitrides for a long time. We found that most of the works of literature have discussed the plasmonic properties and applications of titanium nitride (TiN) and zirconium nitride (ZrN) nanostructures, but hafnium nitride (HfN) is seldom to be studied. The high epsilon near zero(ENZ) (~3.1 eV) of HfN makes it a good candidate for a color filter. By changing the different geometry parameters of the nanostructure (period, height, and radius), we can modulate the absorption peak to demonstrate different colors, which achieve a backlight-free display. Also, HfN, which is relatively inexpensive to manufacture, has refractory properties, a melting point as high as 3,000 ˚C (Tm~3583˚C), high chemical stability and well mechanical hardness. These properties make HfN has more stable optical properties than traditional metals (e.g., gold, silver, aluminum) in harsh experimental operations. This thesis studied the complex refractive index performance of HfN films grown by RF magnetron sputtering. And we simulated nanodisk and nanograting array structures using the finite-time domain-difference (FDTD) method to generate the colors by tuning the wavelength of surface plasmonic resonance(400 nm ~ 850 nm). In this work, we successfully realized the HfN backlight-free displays, which can be controlled from blue to red on the subwavelength scale. And the application of the polarized-selectively of the grating structure. In addition, we also discussed the comparison of the high thermal and environmental stabilities between HfN nanostructure and traditional metal. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:31:59Z (GMT). No. of bitstreams: 1 U0001-1609202215561400.pdf: 6515892 bytes, checksum: cfa9c630311e0cbdc0b6a185714db806 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 VI Abstract VIII 目錄 VI 圖目錄 XII 表目錄 XVII 第一章、緒論 1 1-1、研究背景 1 1-2、電漿子晶體顯示器 3 1-3、研究動機 6 第二章、局域性電漿子共振原理 8 2-1、德汝德-勞倫茲模型(Drude-Lorentz Model) 8 2-2、克拉莫-克若尼關係式(K-K Relation) 16 2-3、局域性電漿子共振(LSPR) 16 第三章、實驗儀器及原理 21 3-1、高真空磁控射頻交流濺鍍機(HV Magnetron RF Sputter) 21 3-2、橢圓偏振光譜儀 22 3-3、超高解析電子束微影系統(EBL) 26 3-4、熱蒸鍍機(Thermal evaporator) 28 3-5、感應耦合電漿蝕刻(ICP-RIE) 29 3-5-1、物理性蝕刻 30 3-5-2、化學性蝕刻 30 3-5-3、活性離子蝕刻(Ion-Enhanced Etching) 31 3-6、CIE 1931XYZ色彩空間(Commission internationale de l'éclairage) 33 第四章、氮化鉿薄膜性質分析 36 4-1、氮化鉿光學性質分析 36 4-2、氮化鉿性質以及結構分析 43 第五章、氮化鉿電漿子晶體之全彩顯色器 50 5-1、實驗製程流程 50 5-2、有限時域差分模擬(FDTD) 51 5-3、氮化鉿全彩電漿子晶體之分析與討論 59 5-4、氮化鉿電漿子晶體陣列實際光學顯微鏡圖及其應用 66 第六章、結論與未來展望 70 參考文獻 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 過渡金屬氮化物 | zh_TW |
| dc.subject | 偏振選擇性 | zh_TW |
| dc.subject | 無背光顯示器 | zh_TW |
| dc.subject | 氮化鉿 | zh_TW |
| dc.subject | 超穎介面 | zh_TW |
| dc.subject | 電漿子晶體 | zh_TW |
| dc.subject | Transition metal nitride | en |
| dc.subject | Metasurface | en |
| dc.subject | HfN | en |
| dc.subject | Plasmonic crystals | en |
| dc.subject | Polarization-Sensitive | en |
| dc.subject | Backlight-free displays | en |
| dc.title | 難熔電漿子材料的開發與應用:氮化鉿電漿子晶體實現全彩顯色 | zh_TW |
| dc.title | Full-color Generation Enabled by Hafnium Nitride Refractory Plasmonic Crystals | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 朱士維;陳國平;陳又誠 | zh_TW |
| dc.contributor.oralexamcommittee | Shi-Wei Chu;Guo-Ping Chen;Yu-Cheng Chen | en |
| dc.subject.keyword | 過渡金屬氮化物,超穎介面,氮化鉿,電漿子晶體,偏振選擇性,無背光顯示器, | zh_TW |
| dc.subject.keyword | Transition metal nitride,Metasurface,HfN,Plasmonic crystals,Polarization-Sensitive,Backlight-free displays, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202203477 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-21 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2027-09-23 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 此日期後於網路公開 2027-09-23 | 6.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
