Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85991
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文進(Wen-Chin Chen),徐宏民(Winston H. Hsu)
dc.contributor.authorCheng-Wei Linen
dc.contributor.author林承緯zh_TW
dc.date.accessioned2023-03-19T23:31:54Z-
dc.date.copyright2022-10-07
dc.date.issued2022
dc.date.submitted2022-09-20
dc.identifier.citationS. Ao, Q. Hu, B. Yang, A. Markham, and Y. Guo. Spinnet: Learning a general surface descriptor for 3d point cloud registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11753–11762, 2021. X. Bai, Z. Luo, L. Zhou, H. Fu, L. Quan, and C.L. Tai. D3feat: Joint learning of dense detection and description of 3d local features. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6359–6367, 2020. D. Bauer, T. Patten, and M. Vincze. Reagent: Point cloud registration using imitation and reinforcement learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14586–14594, 2021. P. J. Besl and N. D. McKay. Method for registration of 3d shapes. In Sensor fusion IV: control paradigms and data structures, volume 1611, pages 586–606. Spie, 1992. D. Campbell and L. Petersson. Gogma: Globallyoptimal gaussian mixture alignment. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5685–5694, 2016. D. Campbell, L. Petersson, L. Kneip, H. Li, and S. Gould. The alignment of the spheres: Globallyoptimal spherical mixture alignment for camera pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11796–11806, 2019. D. Cattaneo, M. Vaghi, and A. Valada. Lcdnet: Deep loop closure detection and point cloud registration for lidar slam. IEEE Transactions on Robotics, 2022. H. Chen, Z. Wei, Y. Xu, M. Wei, and J. Wang. Imlovenet: Misaligned image supported registration network for lowoverlap point cloud pairs. In ACM SIGGRAPH 2022 Conference Proceedings, pages 1–9, 2022. Z. Chen, F. Yang, and W. Tao. Detarnet: Decoupling translation and rotation by siamese network for point cloud registration. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 401–409, 2022. D. Chetverikov, D. Stepanov, and P. Krsek. Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm. Image and vision computing, 23(3):299–309, 2005. C. Choy, W. Dong, and V. Koltun. Deep global registration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 2514–2523, 2020. C. Choy, J. Park, and V. Koltun. Fully convolutional geometric features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8958–8966, 2019. T. S. Cohen and M. Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016. C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, and L. J. Guibas. Vector neurons: A general framework for so (3)equivariant networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 12200–12209, 2021. H. Deng, T. Birdal, and S. Ilic. Ppfnet: Global context aware local features for robust 3d point matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 195–205, 2018. A. Drory, T. Shomer, S. Avidan, and R. Giryes. Best buddies registration for point clouds. In Proceedings of the Asian Conference on Computer Vision, 2020. C. Esteves, C. AllenBlanchette, A. Makadia, and K. Daniilidis. Learning so (3) equivariant representations with spherical cnns. In Proceedings of the European Conference on Computer Vision (ECCV), pages 52–68, 2018. M. Finzi, S. Stanton, P. Izmailov, and A. G. Wilson. Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data. In International Conference on Machine Learning, pages 3165–3176. PMLR, 2020. M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395, 1981. A. W. Fitzgibbon. Robust registration of 2d and 3d point sets. Image and vision computing, 21(1314):1145–1153, 2003. F. Fuchs, D. Worrall, V. Fischer, and M. Welling. Se (3)transformers: 3d rototranslation equivariant attention networks. Advances in Neural Information Processing Systems, 33:1970–1981, 2020. Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser. The perfect match: 3d point cloud matching with smoothed densities. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 5545–5554, 2019. S. Gold, C.P. Lu, A. Rangarajan, S. Pappu, and E. Mjolsness. New algorithms for 2d and 3d point matching: Pose estimation and correspondence. Advances in neural information processing systems, 7, 1994. M. B. Horowitz, N. Matni, and J. W. Burdick. Convex relaxations of se (2) and se (3) for visual pose estimation. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 1148–1154. IEEE, 2014. S. Huang, Z. Gojcic, M. Usvyatsov, A. Wieser, and K. Schindler. Predator: Registration of 3d point clouds with low overlap. In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pages 4267–4276, 2021. P. Kim, J. Chen, and Y. K. Cho. Slamdriven robotic mapping and registration of 3d point clouds. Automation in Construction, 89:38–48, 2018. R. Kondor and S. Trivedi. On the generalization of equivariance and convolution in neural networks to the action of compact groups. In International Conference on Machine Learning, pages 2747–2755. PMLR, 2018. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. J. Li, C. Zhang, Z. Xu, H. Zhou, and C. Zhang. Iterative distanceaware similarity matrix convolution with mutualsupervised point elimination for efficient point cloud registration. In European conference on computer vision, pages 378–394. Springer, 2020. K.L. Low. Linear leastsquares optimization for pointtoplane icp surface registration. Chapel Hill, University of North Carolina, 4(10):1–3, 2004. W. Lu, G. Wan, Y. Zhou, X. Fu, P. Yuan, and S. Song. Deepvcp: An endtoend deep neural network for point cloud registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 12–21, 2019. H. Maron, N. Dym, I. Kezurer, S. Kovalsky, and Y. Lipman. Point registration via efficient convex relaxation. ACM Transactions on Graphics (TOG), 35(4):1–12, 2016. C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652–660, 2017. Z. Qin, H. Yu, C. Wang, Y. Guo, Y. Peng, and K. Xu. Geometric transformer for fast and robust point cloud registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11143–11152, 2022. A. Segal, D. Haehnel, and S. Thrun. Generalizedicp. In Robotics: science and systems, volume 2, page 435. Seattle, WA, 2009. A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitzmann. Neural descriptor fields: Se (3)equivariant object representations for manipulation. arXiv preprint arXiv:2112.05124, 2021. D. Stutz and A. Geiger. Learning 3d shape completion under weak supervision. CoRR, abs/1805.07290, 2018. R. Y. Takimoto, M. d. S. G. Tsuzuki, R. Vogelaar, T. de Castro Martins, A. K. Sato, Y. Iwao, T. Gotoh, and S. Kagei. 3d reconstruction and multiple point cloud registration using a low precision rgbd sensor. Mechatronics, 35:11–22, 2016. Y. Wang and J. M. Solomon. Deep closest point: Learning representations for point cloud registration. In Proceedings of the IEEE/CVF international conference on computer vision, pages 3523–3532, 2019. Y. Wang and J. M. Solomon. Prnet: Selfsupervised learning for partialtopartial registration. Advances in neural information processing systems, 32, 2019. Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1912–1920, 2015. J. Yang, H. Li, D. Campbell, and Y. Jia. Goicp: A globally optimal solution to 3d icp pointset registration. IEEE transactions on pattern analysis and machine intelligence, 38(11):2241–2254, 2015. Z. J. Yew and G. H. Lee. Rpmnet: Robust point matching using learned features. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11824–11833, 2020. Z. J. Yew and G. H. Lee. Regtr: Endtoend point cloud correspondences with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6677–6686, 2022. W. Yuan, B. Eckart, K. Kim, V. Jampani, D. Fox, and J. Kautz. Deepgmr: Learning latent gaussian mixture models for registration. In European conference on computer vision, pages 733–750. Springer, 2020. Q.Y. Zhou, J. Park, and V. Koltun. Fast global registration. In European conference on computer vision, pages 766–782. Springer, 2016. M. Zhu, M. Ghaffari, and H. Peng. Correspondencefree point cloud registration with so(3)equivariant implicit shape representations. In Conference on Robot Learning, pages 1412–1422. PMLR, 2022.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85991-
dc.description.abstract點雲配準是一個電腦視覺和機器人操作中的關鍵問題,而現有的方法要麼依賴於匹配對姿態差異敏感的局部幾何特徵,要麼利用全局形狀,導致在面對部分重疊等點雲分佈變化時產生不穩定的結果。 這篇碖文中,我們結合了兩種方法的優點,利用漸進式的流程來同時處理這兩個問題:我們首先透過對齊全局特徵來減少輸入點雲之間的姿態差異,然後匹配局部特徵以進一步優化點雲分佈變化所造成的不穩定。由於對齊全局特徵需要有保留點雲姿態的特徵,而匹配局部特徵則期望有不受姿態影響的特徵,所以我們提出了一種對於旋轉與位移等變的特徵提取器來同時生成兩種不同類型的特徵。在這個特徵提取器中,我們首先利用旋轉與位移等變的神經網路來編譯保留點雲的姿態的特徵表示,接著再透過分離這些姿態來轉成不受姿態影響的特徵表示。實驗表明,我們提出的方法在面對姿態差異和點雲分佈變化時,與最先進的方法相比,召回率提高了 20%。zh_TW
dc.description.abstractPoint cloud registration is a crucial problem in computer vision and robotics. Existing methods either rely on matching local geometric features, which are sensitive to the pose differences, or leverage global shapes and thereby lead to inconsistency when facing distribution variances such as partial overlapping. Combining the advantages of both types of methods, we adopt a coarse-to-fine pipeline that concurrently handles both issues. We first reduce the pose differences between input point clouds by aligning global features; then we match the local features to further refine the inaccurate alignments resulting from distribution variances. As global feature alignment requires the features to preserve the poses of input point clouds and local feature matching expects the features to be invariant to these poses, we propose an SE(3)-equivariant feature extractor to simultaneously generate two types of features. In this feature extractor, representations preserving the poses are first encoded by our novel SE(3)-equivariant network and then converted into pose-invariant ones by a pose-detaching module. Experiments demonstrate that our proposed method increases the recall rate by 20% compared to state-of-the-art methods when facing both pose differences and distribution variances.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:31:54Z (GMT). No. of bitstreams: 1
U0001-1708202215000300.pdf: 5657284 bytes, checksum: 7c1098a9739e241a2bd3323797f5f605 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Related Work 5 2.1 Local Registration Methods 5 2.2 Global Registration Methods 6 2.3 Group Equivariant Neural Network 6 Chapter 3 Methodology 9 3.1 Preliminaries 9 3.2 SE(3)-­Equivariant Feature Extractor 10 3.2.1 SE(3)-Equivariant Global Features 11 3.2.2 SE(3)-Invariant Local Features 12 3.3 Global Register 12 3.3.1 Feature Alignment 13 3.3.2 Implicit Representation Loss 13 3.3.3 Registration Loss 14 3.4 Local Register 15 3.4.1 Hard Elimination 15 3.4.2 IDAM 15 Chapter 4 Experiments 17 4.1 Dataset: ModelNet40 17 4.2 Training and Testing Details 17 4.3 Evaluation Metrics 18 4.4 Baselines 18 4.5 Performance on Multiple Point Cloud Settings 19 4.5.1 Clean Data 20 4.5.2 Noisy Data 20 4.5.3 Independently Sampled Data 21 4.5.4 Partially Overlapping Data 21 4.6 Ablations 22 References 25 Appendix A SE(3)-Equivariant Feature Extractor 33 A.1 Formulation and Proof 33
dc.language.isoen
dc.subject點雲配準zh_TW
dc.subject機器學習zh_TW
dc.subject深度學習zh_TW
dc.subject電腦視覺zh_TW
dc.subject等變神經網路zh_TW
dc.subjectEquivariant Neural Networken
dc.subjectComputer Visionen
dc.subjectMachine Learningen
dc.subjectDeep Learningen
dc.subjectPoint Cloud Registrationen
dc.title利用旋轉與位移等變的特徵表示進行漸進式點雲配準zh_TW
dc.titleCoarse-to-Fine Point Cloud Registration with SE(3)-Equivariant Representationsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕廷(Yi-Ting Chen),葉梅珍(Mei-Chen Yeh)
dc.subject.keyword電腦視覺,機器學習,深度學習,點雲配準,等變神經網路,zh_TW
dc.subject.keywordComputer Vision,Machine Learning,Deep Learning,Point Cloud Registration,Equivariant Neural Network,en
dc.relation.page33
dc.identifier.doi10.6342/NTU202202508
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
dc.date.embargo-lift2024-09-01-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-1708202215000300.pdf5.52 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved