請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85966完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何昊哲 | zh_TW |
| dc.contributor.advisor | Hao-Che Ho | en |
| dc.contributor.author | 賴茂修 | zh_TW |
| dc.contributor.author | Mauricio Rolando Escalante Cámbar | en |
| dc.date.accessioned | 2023-03-19T23:30:49Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2022-09-30 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Wu, C.C.; Kuo, Y.H. (1999) Typhoons affecting Taiwan: Current understanding and future challenges.
2. WRA [Water Resources Agency]. (2016). Hydrological year book of Taiwan, Republic of China; Part I Rainfall, Taipei, Taiwan; Water Resources Agency, Ministry of Economic Affairs: Taipei Taiwan, 2015, pp. 5-7. 3. US Army Corps of Engineering. (2016). HEC-RAS River Analysis System User’s Manual, version 5.0. California, USA. 4. 3Di Documentation (2021). Website: https://docs.3di.live/ 5. Teng, J,; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta D.; Kim, S. (2017) Flood Inundation Modeling: A review of methods, recents advances and uncertainty analysis. 6. Mihu-Pintile, A.; Cimpianu, C.I.; Stoleriu, C.C.; Perez, M.N.; Paveluc, L.E. (2019) Using high-density LiDAR data and 2D streamflow hydraulic modeling to improve urban flood hazard maps. A HEC-RAS multi scenario approach. 7. Thakur, B.; Parajuli, R.; Kalra, A.; Ahmad, S.; Gupta, R.; (2017). Coupling HEC-RAS and HEC-HMS in precipitation runoff modeling and evaluating flood plain inundation map. Sacramento, California, USA, pp. 240-251. 8. Fassoni-Andrade, A.C.; Fan, F.M.; Collischonn, W.; Fassoni, A.C.; Paiva, R.C.D. (2018). Comparison of numerical schemes of river flooding routing with an inertial approximation of the Saint Venant Equations. 9. Morsy, M.M.; Goodall, J.L.; O’Neil G.L.; Sadler, J. M.; Hassan, G.; Huxley, C.A. (2018). A cloud-based flood warning system for forecasting impacts to transportation infrastructure systems. 10. Costabile, P.; Macchione, F.; Natale, L.; Petaccia, G. (2015) Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach. 11. NOAA Office of Coast Survey (2015). How Hydrodynamic Models Are Used. 12. Bladé, E., Sánchez-Juny, M. (2010). Estudi en model numèric bidimensional del funcionament hidràulic del riu Fluvià a l'entorn de Torroella de Fluvià considerant el condicionament de lacarretera C-31. Barcelona, Spain. 13. US Army Corps of Engineers (2022). HEC-RAS River Analysis System 2D User’s Manual, version 6.0. 14. Guus S. Stelling (2012). Quadtree flood simulations with sub-grid digital elevation models. 15. Central Weather Bureau (2021). Historical data of typhoon. 16. WRA [Water Resources Agency]. (2006). Regulation project of flood-prone areas. Water Resources Agency, Ministry of Economic Affairs: Taipei Taiwan, 2006. 17. Water Resources Agency (1980) 烏溪水系治理基本計畫 (本流及支流筏子溪與眉溪. 18. 全國水環境改善計畫 [筏子溪水環境改善計畫] (2019). Taichung City Government, Taiwan. 19. National Resources Conservation Service (2007). National Engineering Handbook, Part 630 Hydrology. 20. Nerantzis Kazakis, Ioannis Kougias, Thomas Patsialis (2015). Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece. 21. Giacomoni, M. H., E. M. Zechman. (2019). Hydrologic Footprint Residence. A New Metric to Assess Hydrological Alterations due to Urbanization. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85966 | - |
| dc.description.abstract | 地形資訊(DEM)的品質及精度,大斷面高程的分布以及一二維水理模式的應用皆是繪製淹水潛勢地圖的關鍵影響因子。高解析度地形資訊的日益普及,二三維水理模式以及高速計算機的開發將提升淹水潛勢地圖測繪技術的能力。本研究以台中市南屯區筏子溪作為研究區域,使用相同的地形資料(DEM)和兩種水理模式(二維 HEC-RAS和二維 3Di)分析了水理模式建模和淹水潛勢地圖對於地形資料,幾何配置,邊界條件和模型類型的敏感性。目的透過考慮洪災評估指標(FRI)來評估此兩種水理模式模擬淹水潛勢地圖的差異及能力,並以QGIS 做為模式輸入,執行模型和劃定洪水淹沒區域的預處理和後處理工具。研究結果表明,透過比較不同分析單元總淹沒面積和水文滯留足跡(HFR),使用高解析度的 DEM 資料可以幫助獲得準確的洪水潛勢圖以及判斷水理模式之間的侷限性差異,同時顯示了網格解析度在水理模式中的重要性以及其如何以更高的解析度精確判斷洪災影響程度一般來說在本研究中評估的大多數情況下,HEC-RAS 模式預測的洪災影響範圍更大, ,顯示其高估了該研究區域的洪災影響區域及程度接近現實的 15%。然而,3Di 水理模式的預測顯示出更準確的模擬結果及洪災影響區域接近現實的 40%,故3Di被證實比HEC-RAS更適合應用於本研究區域台中市等都市地區的洪災模擬。 | zh_TW |
| dc.description.abstract | Flood inundation mapping is influenced by many factors such as the quality of terrain data (Digital Elevation Model, DEM), the cross-sectional configuration, and the use of a one-dimensional or two-dimensional hydrodynamic model. The increasing availability of high-resolution topographic data, development of two and three-dimensional hydrodynamic models, and access to fast computing computers, are revolutionizing the flood inundation mapping process. The objective of this research is to evaluate both of the two-dimensional hydrodynamic models, such as HEC-RAS and 3Di on the flood inundation mapping process, by considering its flood hazard index. By using the same topographic data (DEM) and two types of models (2D HEC-RAS and 2D 3Di), on the study reach of the Fazih River, located on the Nantung District of Taichung City; the sensitivity of hydraulic modeling and flood inundation mapping to terrain data, geometric configuration, boundary conditions, and model type is analyzed. QGIS is used as pre- and post-processing tools to prepare model inputs, execute models, and delineated flood inundation areas. The result from this study shows that with a higher resolution DEM data is possible to have an accurate flooding inundation map, as well as the differences between the hydrodynamic models and their limitations or advantages by comparing their total inundation area and hydrological footprint residence (HFR) values for each case analyzed. The results also show the importance of the grid resolution in hydrodynamic models, and how mesh resolution is shown to change the inundation extent with a higher resolution. In general, HEC-RAS modeling predicts a larger inundation extent, in which most of the cases evaluated in this research, it proves to overestimate the flooding area or results (15% closer to reality), however, 3Di hydrodynamic modeling shows a more accurate inundation extent in each of the cases (40% closer to reality) and proves to be a more suitable and higher dimensional numerical model to use in urban areas such as Taichung City in Taiwan, rather than conventional modeling like HEC-RAS. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:30:49Z (GMT). No. of bitstreams: 1 U0001-2009202217360200.pdf: 65837304 bytes, checksum: 015608252f18c97c8cd1fec60dfcbdfe (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 1. Chapter 1: Introduction 1
1.1. Introduction 1 1.2. Objectives 3 1.3. Thesis Organization 4 2. Chapter 2: Literature Review 5 2.1 Hydrodynamic Models 5 2.1.1 Hydrodynamic Equations 6 2.2 HEC-RAS 8 2.2.1 Overview of Model Formulations 8 2.2.2 HEC-RAS 2D Modeling Advantages/Capabilities 9 2.2.3 Developing a Terrain Model in HEC-RAS 10 2.2.4 Development of the 2D Computational Mesh 10 2.2.5 Creating a 2D Computational Mesh 10 2.2.6 Editing/Modifying the Computational Mesh 11 2.2.7 Boundary and Initial Conditions for 2D Flow Areas 12 2.2.8 Flow Hydrograph 13 2.2.9 Normal Depth 13 2.2.10 Initial Conditions (Single Water Surface Elevation) 13 2.2.11 Running A Model with 2D Flow Areas 14 2.2.12 Diffusion Wave Equations 14 2.3 3Di 15 2.3.1 3Di Modeler Interface (QGIS) 16 2.3.2 3Di Live 16 2.3.3 3Di Modelling Concepts 16 2.3.4 The Grid in 3Di 17 2.3.5 Computational Grid in 3Di 17 2.3.6 2D Surface Flow in 3Di 18 2.3.7 Numerical Method in 3Di 18 2.3.8 Boundary Conditions in 3Di 22 2.3.9 Structures (Sewerage) in 3Di 22 3. Chapter 3: Study Area and Data 24 3.1 Study Area 24 3.2 Digital Elevation Model (DEM) 26 3.3 Flow Data 26 3.4 Water Level Data 28 4. Chapter 4: Methodology 29 4.1 SCS Unit Hydrograph Model 29 4.1.1 Basic Concepts and Equations 29 4.1.2 Unit Hydrograph Calculated for each Return Period (TR) 31 4.2 Calibration 35 4.3 Developing A 2D Unsteady Flow Model in HEC-RAS 35 4.4 Developing a 2D Hydrodynamic Model in 3Di 40 4.5 Intercomparison between HEC-RAS & 3Di Hydrodynamic Models 45 4.6 Scenarios Configurations for HEC-RAS and 3Di Simulations 46 4.7 Flood Hazard Index 46 4.7.1 Total Inundation Area 46 4.7.2 Hydrologic Footprint Residence (HFR) 47 5. Chapter 5: Results & Discussions 48 5.1 Maximum Inundation Area 48 5.1.1 Case A - (TR= 2 Years) 49 5.1.2 Case B - (TR=5 Years) 50 5.1.3 Case C - (TR= 10 Years) 51 5.1.4 Case D - (TR=20 Years) 52 5.1.5 Case E - (TR=50 Years) 53 5.1.6 Case F - (TR=100 Years) 54 5.1.7 Case G - (TR=200 Years) 55 5.1.8 Maximum Inundation Area Chart Comparison 56 5.1.1 Case A - HEC-RAS Inundation Area for Each Hour (TR = 2 Years) 57 5.1.2 Case A - 3Di Inundation Area for Each Hour (TR = 2 Years) 58 5.1.3 Case B - HEC-RAS Inundation Area for Each Hour (TR = 5 Years) 60 5.1.4 Case B - 3Di Inundation Area for Each Hour (TR = 5 Years) 61 5.1.5 Case C - HEC-RAS Inundation Area for Each Hour (TR = 10 Years) 63 5.1.6 Case C - 3Di Inundation Area for Each Hour (TR = 10 Years) 64 5.1.7 Case D - HEC-RAS Inundation Area for Each Hour (TR = 20 Years) 66 5.1.8 Case D - 3Di Inundation Area for Each Hour (TR = 20 Years) 67 5.1.9 Case E - HEC-RAS Inundation Area for Each Hour (TR = 50 Years) 69 5.1.10 Case E - 3Di Inundation Area for Each Hour (TR = 50 Years) 70 5.1.11 Case F - HEC-RAS Inundation Area for Each Hour (TR = 100 Years) 72 5.1.12 Case F - 3Di Inundation Area for Each Hour (TR = 100 Years) 73 5.1.13 Case G - HEC-RAS Inundation Area for Each Hour (TR = 200 Years) 75 5.1.14 Case G - 3Di Inundation Area for Each Hour (TR = 200 Years) 76 5.1.15 HEC-RAS Hydrological Footprint Residence (HFR) 78 5.1.16 3Di Hydrological Footprint Residence (HFR) 78 6. Chapter 6: Conclusions & Recommendations 79 6.1 Conclusions 79 6.2 Recommendations 80 References 81 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 洪災韌性指標 | zh_TW |
| dc.subject | 水動力模型 | zh_TW |
| dc.subject | 二維水理模式比較 | zh_TW |
| dc.subject | 水文滯留足跡 | zh_TW |
| dc.subject | 數值地形高程 | zh_TW |
| dc.subject | Flood Hazard Index | en |
| dc.subject | Two-Dimensional Modeling | en |
| dc.subject | Digital Elevation Modeling (DEM) | en |
| dc.subject | 3Di | en |
| dc.subject | Hydrological Footprint Residence (HFR) | en |
| dc.subject | Hydrodynamic Model | en |
| dc.subject | HEC-RAS | en |
| dc.title | 應用洪災指標於二維HEC-RAS及3Di模式之評估 | zh_TW |
| dc.title | Evaluation of Two-Dimensional HEC-RAS and Two-Dimensional 3Di Models using Flood Hazard Index | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李鴻源;葉克家 | zh_TW |
| dc.contributor.oralexamcommittee | Hong-Yuan Lee;Keh-Chia Yeh | en |
| dc.subject.keyword | 水動力模型,數值地形高程,二維水理模式比較,水文滯留足跡,洪災韌性指標, | zh_TW |
| dc.subject.keyword | Hydrodynamic Model,Digital Elevation Modeling (DEM),Two-Dimensional Modeling,HEC-RAS,3Di,Hydrological Footprint Residence (HFR),Flood Hazard Index, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202203665 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-22 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2022-09-30 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 64.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
