Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85930
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳右人(Iou-Zen Chen)
dc.contributor.authorYa-Hong Linen
dc.contributor.author林亞弘zh_TW
dc.date.accessioned2023-03-19T23:29:21Z-
dc.date.copyright2022-09-27
dc.date.issued2022
dc.date.submitted2022-09-22
dc.identifier.citation甘子能. 1984. 茶葉化學入門. 台灣省茶業改良場林口分場. 台北. 王自存、張唯勤、蔡志賢. 2002. 包種茶萎凋與攪拌製程中茶菁之乙烯與二氧化碳生成及多酚氧化酶活性的變化. 中國園藝 48:227-238. 王兩全、何信鳳、陳右人、馮鑑淮、邱再發. 1989. 台灣野生茶樹種原保存與利用(一). 內政部78年生態研究第033號. 王兩全、何信鳳、陳右人、馮鑑淮、邱再發. 1990. 台灣野生茶樹種原保存與利用. I .台灣眉原山野生茶樹調查. 臺灣茶業研究彙報 9:1-6. 王進學、葉德銘. 2013. 菊花之細胞膜熱穩定性檢測及其應用於篩選耐熱實生苗.臺灣園藝 59:153-166. 王瑞娟. 2022. 殺菁前茶菁含水率對綠茶品質之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 王慶裕. 2018. 茶葉化學. 製茶學:台灣茶類之製造生產. 新學林出版社. 台北. 206pp. 史樨、陳永盛、楊守國、石振源、廖增祿. 1972. 台灣南投野生茶樹調查報告(I). 台灣農業季刊 8:193-201. 行政院農委會茶業改良場. 2022. 感官品評基本原理及操作. 行政院行政院農委會茶業改良場茶葉感官品評初級班講義. p.1-59. 何信鳳. 1995. 紅茶製造. p. 31-38. 茶業技術推廣手冊製茶篇. 台灣省茶業改良場. 桃園. 何信鳳、王兩全. 1984. 台灣野生茶樹之蒐集. 臺灣茶業研究彙報 3:133-155. 何信鳳、張清寬、王兩全. 1976. 野生茶樹搜集及利用. 茶業改良場65年年報pp. 126-129. 吳振鐸、馮鑑淮、蔡俊明. 1972. 臺灣眉原山野生茶樹形態之觀察(II). 臺灣農業季刊 8:133-160. 吳振鐸、賈雲翔、馮鑑淮、蔡俊明. 1970. 臺灣眉原山野生茶樹形態之觀察(I). 臺灣農業季刊 6:1-8. 吳聲舜、朱德民. 1999. 遮蔭處理對茶樹芽葉生育與品質之影響. 臺灣茶業研究彙報 18:23-44. 李淑美、陳右人. 2001. 溫度對茶樹芽葉生育之影響. 臺灣茶業研究彙報. 20:175-184. 李淑美、陳右人. 2003. 溫度對茶樹茶菁產量和品質之影響. 臺灣茶業研究彙報. 22:43-56. 呂勝由、楊遠波. 1987. 台灣的野生茶樹-武威山茶. 中華林學季刊 20:101-107. 肖潤林、王久榮、湯宇、劉永勝、彭晚霞、宋同清. 2005. 高溫乾旱季節遮陰網覆蓋對茶園溫溼度和茶樹生理的影響. 生態學雜誌. 24:251-255. 余錦安、鄭混元、羅士凱、蕭建興、胡智益、楊美珠、林金池、吳聲舜、邱垂豐. 2019. 2019年度命名茶樹新品種臺茶24 號試驗報告. 臺灣茶業研究彙報 38:11-28. 林真如. 2011. 紫外線對茶樹葉片中兒茶素含量之影響. 國立臺灣大學園藝學系碩士論文. 台北. 范嘉琦、楊美珠、陳右人、陳英玲、李金龍、吳俊達、阮素芬. 2012. 烘焙溫度、時間及次數對台茶十三號包種茶咖啡因及兒茶素類含量之影響. 臺灣茶業研究彙報 31:53-72. 陳右人、蔡俊明. 1999. 台灣現有茶樹品種嫩梢與葉片性狀調查. 臺灣茶業研究彙報 18:1-22. 孫凭瑋. 2017. 茶樹葉片活性成分之周年變化及紅茶製程條件對茶湯品質影響之探討. 國立中興大學農藝學系碩士論文. 台中. 陳英玲. 1985. 遮蔭對茶葉化學成分之影響(一). 臺灣茶業研究彙報 4:81-88. 陳英玲. 1995. 不同茶樹品種多酚酶活性及其在製茶過程中之變化. 農特產品加工研討會專刊. 臺灣省農業試驗所編印. P. 111-119. 陳國任、蔡文福. 1992. 缺水及不同溫度處理對茶樹芽葉生育之影響. 臺灣茶業研究彙報 11:45-56. 馮鑑淮、王兩全、林木連、陳右人、張清寬、邱再發. 1991. 台灣野生茶樹種原保存及利用(三)。自然文化景觀報告 5:1-14. 馮鑑淮、徐英祥. 1987. 遮蔭度對茶芽特性及產量與包種茶品質之研究. 灣茶葉研究彙報 6:15-24. 渡邊. 1940. 台灣紅茶產業史 (中). 台灣之茶業. 23(5):26-36. 徐英祥譯. 1995. 臺灣之阿薩姆種茶樹的栽培與製造. 臺灣日據時期茶業文獻譯集. 115-122pp. 黃騰鋒、張允恭、黃建民. 2002. 施灌時機對土壤溫度及茶芽生育之影響. 台灣茶葉研究彙報 21:119-128. 楊盛勳、賴正南、黃謄鋒、阮逸明. 1997. 台灣茶葉起源與特色. 財團法人台北市七星農田水利研究發展基金會, 臺北. 80pp. 蒲曉亞、袁毅君、王廷璞、李真真、張麗娟. 2011. 茶葉的主要呈味物質綜述. 天水師範學院學報. 31:40-44. 鄭混元. 1995. 東部茶區氣象條件對茶樹芽葉生育之影響. 臺灣茶業研究彙報. 14:47-64. 鄭混元. 1999. 乾旱其對茶樹農藝性狀及產量之影響研究. 臺灣茶業研究彙報. 18:45-56. 鄭混元、余錦安. 2019. 臺東永康山茶平地栽培之植株生育及產量評估. 臺灣茶業研究彙報 38:51-70. 鄭混元、范宏杰. 2013. 台灣野生茶樹資源及其利用. 臺灣茶業研究彙報 32:21-44. 鄭混元、范宏杰、余錦安. 2016a. 永康山茶品質特徵、化學成分及礦物元素含量之研究. 臺灣茶業研究彙報 35:21-48. 鄭混元、范宏杰、余錦安. 2016b. 不同葉形永康山茶芽葉性狀、化學成分及製茶品質之研究. 臺灣茶業研究彙報 35:49-64. 鄭混元、范宏杰、陳信言、陳惠藏. 2003. 台東永康山茶茶樹調查及復育與製茶品質之研究. 臺灣茶業研究彙報 22:1-16. 蔡永生、劉士綸、王雪芳、區少梅. 2004. 臺灣主要栽培茶樹品種兒茶素含量與抗氧化活性之比較. 臺灣茶業研究彙報 23:115-132. 蕭孟衿、吳聲舜. 2018. 臺灣山茶的發現、調查、分類學釐清及資源利用現況. 臺灣茶業研究彙報 37:1-12. 蘇夢淮. 2007. 台灣山茶之分類研究. 國立臺灣大學生態學與演化生物學研究所博士論文. 台北. 橋本實. 1967. タイワンヤマチャの形態に関する研究. 第1報台湾中部における野生種の形態学的差異. 熱帯農業11:90-94. (Hashimoto, M. 1967. Studies on the morphology of Taiwan-yamacha (wild tea-plant) I. On the morphological difference of wild species in central Taiwan. Japanese J. Tropical Agriculture 11:90-94. Alasalvar, C., B. Topal, A. Serpen, B. Bahar, E. Pelvan, and V. Gökmen. 2012. Flavor characteristics of seven grades of black tea produced in turkey. J. Agr. Food Chem. 60:6323-6332 Armstrong, G.A. and J.E. Hearst. 1996. Carotenoids 2:Genetics and molecular biology of carotenoid pigment biosynthesis. Federation of American Soc. for Expt. Biol. J. 10:228-37. Balentine, D.A., S.A. Wiseman, and L.C. Bouwens. 1997. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr. 37:693-704. Bardzig, J.M., H.V. Marsh Jr, and J.R. Harris. 1971 Effect of water stress on the activities of three enzymes in maize seedings. Plant Physiol. 47:828-831. Bondarovich, H.A., P. Friedel, V. Krampl, J.A. Renner, F.W. Shephard, and M. A. Gianturco. 1967. Volatile constitutents of coffee. Pyrazines and other compounds. J. Agr. Food Chem. 15:1093-1099. Chu, K.O., and C.C. Pang. 2018. Pharmacokinetics and disposition of green tea catechins, p. 17-36. In:N. Malangu (ed.). Pharmacokinetics and Adverse Effects of Drugs-Mechanisms and Risks Factors. Intechopen, Vienna, Austria. Cloughley, J.B. 1982. Factors influencing the caffeine content of black tea: Part 1 - The effect of field variables. Food Chem. 9:269-276 Cloughley, J.B. 1983. Factors influencing the caffeine content of black tea: Part 2 - The effect of production variables. Food Chem. 10:25-34. Deb, S. and J. Pou. 2016. A review of withering in the processing of black tea. J. of Biosystems Eng. 41:365-372. Engelhardt, U. H. 2010. Chemistry of tea, p. 999-1032. In: H.W. Liu and L. Mander (eds.). Comprehensive nature products II. Elsevier, Oxford. Erturk, Y., S. Ercisli, M. Sengul, Z. Eser, A. Haznedar, and M. Turan. 2010. Seasonal variation of total phenolic, antioxidant activity and minerals in fresh tea shoots (Camellia sinensis var. sinensis). Pak. J. Pharm Sci. 23:69-74. Fang, R., S.P. Redfern, D. Kirkup, E.A. Porter, G.C. Kite, L.A. Terry, M.J. Berry, and M.S.J. Simmonds. 2017. Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons. Food Chem. 220:517-526. Feldheim, W., P. Yongvanit, and P.H. Cummings. 1986. Investigation of the presence and significance of theanine in the tea plant. J. Sci. Food Agr. 31:527-534. Harbowy, M.E., D.A. Balentine, A.P. Davies, and Y. Cai. 1997. Tea chemistry. Plant Sci. 16:415-480. He, G., X. Hou, M. Han, S. Qiu, Y. Li, S. Qin, and X. Chen. 2022. Discrimination and polyphenol compositions of green teas with seasonal variations based on UPLC-QTOF/MS combined with chemometrics. J. Food Composition Analysis. 105:104267. Hilton, P.J. and R.P. Jones. 1973. Relationship between the flavanol composition of fresh tea shoots and the theaflavin content of manufactured tea. J. Sci. of Food and Agr. 24:813-818. Ho, C.H., J.K. Lin, and F. Shahidi. 2009. Tea and tea products, chemistry and health-promoting properties. CRC press, Taylor and Francis Group. FL. p. 132. Ho, C.T., X. Zheng, and S. Li. 2015. Tea aroma formation. Food Sci. and Human Wellness. 4:9-27. Ishino, N., E. Yanase, and S.I. Nakatsuka. 2010. Epimerization of tea catechin under weakly acidic and alkaline conditions. Biosci., Biotechnol., Biochem. 74:875-877. Janet, T.C., W.K. John, K. Thomas, M.O. Kelvin, and W.N. Francis. 2015. Effect of seasons on theanine levels in different kenyan commercially released tea cultivars and its variation in different parts of the tea shoot. Food and Nutr. Sci. 6:1450-1459. Jayasekera, S., A.L. Molanb, M. Gargc, and P.J. Moughan. 2011. Variation in antioxidant potential and total polyphenol content of fresh and fully-fermented Sri Lankan tea. Food Chem. 125:536-541. Jayasekera, S., L. Kaur, A.L. Molan, M.L. Garg, and P.J. Moughan. 2014. Effects of season and plantation on phenolic content of unfermented and fermented Sri Lankan tea. Food Chem. 152:546-551. Kawakami, M., S.N. Ganguly, J. Banerjee, and A. Kobayashi. 1995. Aroma composition of oolong tea and black tea by brewed extraction method and characterizing compounds of darjeeling tea aroma. J. Agr. Food Chem. 43:200-207. Kitamura, S. 1950. On tea and camellias. Acta Phytotax. Geobot. 14:55-63. Lee, L.S., Y.C. Kim, J.D. Park, Y.B. Kim, and S.H. Kim. 2016. Changes in major polyphenolic compounds of tea (Camellia sinensis) leaves during the production of black tea. Food Sci. Biotechnol. 25:1523-1527. Li, J. H., A. Nesumi, K. Shimizu, Y. Sakata, M.Z. Liang, Q.Y. He, H.J. Zhou, and F. Hashimoto. 2010. Chemosystematics of tea trees based on tea leaf polyphenols as phenetic markers. Phytochemistry. 71:1342-1349. Li, H., Z.W. Liu, Z.J. Wu, Y.X. Wang, R.M. Teng, and J. Zhuang. 2018a. Differentially expressed protein and gene analysis revealed the effects of temperature on changes in ascorbic acid metabolism in harvested tea leaves. Hort. Res. 5: No. 65. Li, X., J.P. Wei, G.J. Ahammed, L. Zhang, Y. Li, P. Yan, L.P. Zhang, and W.Y. Han. 2018b. Brassinosteroids attenuate moderate high temperature-caused decline in tea quality by enhancing theanine biosynthesis in camellia sinensis L. Plant Sci. 9:1-9. Li, Y., C. He, X. Yu, J. Zhou, W. Ran, Y. Chen, and D. Ni. 2021. Effects of red-light withering on the taste of black tea as revealed by non-targeted metabolomics and transcriptomics analysis. LWT-Food Sci. Technol.147: No. 111620. Li, S., J. Lu, E. Pope, N. Golding, T. Zhou, F. Li, and W. Duan. 2022. Influence of multi-timescale precipitation indices on primary tea production in Baoshan, Yunnan, China. Environ. Res. Commun. 4: No. 025009. Lin, Y. S., Y.J. Tsai, J.S. Tsay, and J.K. Lin. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agr. Food Chem. 51:1864-1873. Liu, H., Y. Xu, J. Wu, J. Wen, Y. Yu, K. An, and B. Zou. 2021. GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons. Food Res. Intl. 150: No. 110784. Mamati, G.E., Y. Liang, and J. Lu. 2006. Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols. J. Sci. Food. Agr. 86:459-464. Nisar, N., L. Li, S. Lu, N. C. Khin, and B.J. Pogson. 2015. Carotenoid metabolism in plants. Mol. plant. 8:68-82 Obanda, M. and P.O. Owuor. 1995. Clonal variations in the response of black tea quality due to plucking standards. Food Chem. 53:381-384. Palva, S. and J.M. Palva. 2007. New Vistas for alpha-frequency band oscillations. Trends Neurosci. 30:150-158. Peterson, J., J. Dwyer, S. Bhagwat, D. Haytowitz, J. Holden, A.L. Eldridge, G. Beecher, and J. Aladesanmi. 2005. Major flavonoids in dry tea. J. Food Composition Anal. 18:487-501. Pietta, P.G. 2000. Flavonoids as antioxidants. J. Natl. Prod. 63:1035-42. Polaino, S., J.A.G. Delgado, P. Arteaga, M.M. Herrador, A.F. Barrero, and E.C. Olmedo. 2012. Apocarotenoids in the sexual interaction of phycomyces blakesleeanus. Org. Biomol. Chem. 10:3002-3009. Raison, J.K., J.A. Berry, P.A. Armond, and C.S. Pike. 1980. Membrance properties in relation to the adaptation of plants to temperature stress. pp. 261-273, In:N.C. Turner, and P.J. Kramer. (eds.). Adaptation of plants to water and high temperature stress. Wiley, New York. Ravichandran, R. and R. Parthiban. 1998. Changes in enzyme activities (polyphenol oxidase and phenylalanine ammonia lyase) with type of tea leaf and during black tea manufacture and the effect of enzyme supplementation of dhool on black tea quality. Food Chem. 62:277-281. Rawat, R., A. Gulati, G.D. K. Babu, R. Acharya, V.K. Kaul, and B. Singh. 2007. Characterization of volatile components of Kangra orthodox black tea by gas chromatography-mass spectrometry. Food Chem. 105:229-235. Saito, K., K.Y. Sakakibara, R. Nakabayashi, Y. Higashi, M. Yamazaki, T. Tohge, and A.R. Fernie. 2013. The flavonoid biosynthetic pathway in arabidopsis:Structural and genetic diversity. Plant Physiol. Biochem. 72:21-34. Salman, S., C. Yılmaz, V. Gokmen, and F. Ozdemir. 2021. Effects of fermentation time and shooting period on amino acid derivatives and free amino acid profiles of tea. Food Sci. and Technol. 137:110481. (https://doi.org/10.1016/j.lwt.2020.110481) Sanderson, G.W. and H.N. Grahamm. 1973. On the formation of black tea aroma. J. Agr. Food Chem. 21:576-585. Sari, F. and Y.S. Velioglu. 2013. Changes in theanine and caffeine contents of black tea with different rolling methods and processing stages. European Food Res. Technol. 237:229-236. Scharbert, S. and T. Hofmann. 2005. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J. Agr. Food Chem. 53:5377-5384. Schuh, C. and P. Schieberle. 2006. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea:Quantitative differences between tea leaves and infusion. J. Agr. Food Chem. 54:916-924. Schwab, W., R.D. Rikanati, and E. Lewinsohn. 2008. Biosynthesis of plant-derived flavor compounds. Plant J. 54:712-32. Ullah, M.R., N. Gogoi, and D. Baruah. 1984. The effect of withering on fermentation of tea leaf and development of liquor characteristics of black tea. J. Sci. Agr. 35:1142-1147. Vuong, Q.V., M.C. Bowyer, and P.D. Roach. 2011. L-Theanine: Properties, synthesis and isolation from tea. J. Sci. Food Agr. 91:1931-1939. Wahid, A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants:An overview. Environ. Expt. Bot. 61:199-223. Wang, L. F., J.Y. Lee, J.O. Chung, J.H. Baik, S. So, and S.K. Park. 2008. Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavour compounds. Food Chem. 109:196-206. Wang, L., Y.K. Wei, Y.W. Jiang, H. Cheng, J. Zhou, W. He, and C.C. Zhang. 2011. Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur. Food Res. Technol. 233:1049-1055. Yamanishi, T., Y. Kita, K. Watanabe, and Y. Nakatani. 1972. Constituents and composition of Steam volatile aroma from ceylon tea. Agr. Biol. Chem. 36:1153-1158. Yao, L., N. Caffin, D. Bruce, Y. Jiang, J. Shi, R. Singanusong, X. Liu, N. Datta, Y. Kakuda, and Y. Xu. 2005. Seasonal variations of phenolic compounds in Australia-grown tea (Camellia sinensis). J. Agr. Food Chem. 53:6477-6483. Yang, Y., J. Kim, J.O. Chung, D. Cho, J.H. Roh, Y.D. Hong, W.G. Kim, and H. Kang. 2022. Variations in the composition of tea leaves and soil microbial community. Biol. Fertility Soils. 58:167-179. Yang, Z., S. Baldermann, and N. Watanabe. 2013. Recent studies of the volatile compounds in tea. Food Res. Intl. 53:585-599. Yang, Z.Y., T. Kinoshita, A. Tanida, H. Sayama, A. Morita, and N. Watanabe. 2009. Analysis of coumarin and its glycosidically bound precursor in Japanese green having sweet-herbaceous odour. Food Chem. 114:289–294. Zhuang, J.H., X.L. Dai, M.Q. Zhu, S.X. Zhang, Q.Y. Dai, X.L. Jiang, Y.J. Liu, L.P. Gao, and T. Xia. 2020. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols. Food Chem. 305:125507.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85930-
dc.description.abstract永康山茶是位於中央山脈東側的台灣原生山茶,茶湯具有特殊香氣、滋味,適製成紅茶,具高產量、抗病蟲害等特性,於2019年經由單株選拔選育出‘台茶24號’。永康山茶新育成之品系,目前主要種植於茶業改良場台東分場,而永康山茶之芽葉性狀、內容物與氣象因子之相關性研究較為缺乏。本試驗探討季節對永康山茶芽葉性狀,鮮葉與製成紅茶之內容物含量及揮發性化合物之影響。為瞭解紅茶製作之參數,先測定含水率、細胞膜熱穩定性、多元酚氧化酶(Polyphenol oxidase, PPO)活性之變化,再進行紅茶之製造。試驗中室內萎凋期間細胞膜熱穩定性隨含水率下降而降低。PPO活性於從萎凋0小時至3小時內降至低點,至萎凋15小時後快速上升,於揉捻後下降。於2020年春茶、第一次夏茶、第二次夏茶、秋茶、冬茶,2021年春茶、第一次夏茶、秋茶共8個季節採摘‘永康1號’、‘永康5號’、‘永康13號’、‘永康20號’,對照品種‘台茶8號’、‘台茶18號’、‘台茶21號’之茶菁,每個品種 (系)分別量測標準芽之芽葉性狀,再採鮮葉及製成紅茶;分析茶葉內容物、揮發性化合物;由專家感官品評紅茶,並分析茶葉品質與內容物、芽葉性狀間之關係及上述三者與氣象因子間的關係。經單因子分析及單元線性迴歸分析後,茶葉內容物與芽葉性狀受品種及氣象因子影響。內容物部分,氣溫、日照量、日照時數與鮮葉總多元酚類、兒茶素及咖啡因呈正相關,與胺基酸呈負相關。芽葉性狀部分,氣溫、日照量、日照時數與葉長、葉寬呈負相關,與葉厚呈正相關;雨量與節間徑及節間長呈正相關。所有品種(系)紅茶揮發性化合物在季節間有一定的差異,以種類而言,春茶、夏茶以及秋茶,分別可辨得55、47、64種揮發性化合物。以供試品種中辨得揮發性化合物之相對豐度進行主成分分析,結果春茶與主成分一正相關且成分負荷量較大的化合物為己酸己烯酯、甲基水楊酸、香堇酮,帶有花香及薄荷香味;與主成分二正相關且成分負荷量較大的化合物為長葉烯、二丁基對甲酚,帶有木質香及具溫和的樟木香。夏茶與主成分一正相關且成分負荷量較大的化合物為二丁基對甲酚,帶有木質香;與主成分二正相關且成分負荷量較大的化合物為己酸己烯酯,帶有木質香及青草香。秋茶與主成分一正相關且成分負荷量較大的化合物為二丁基對甲酚,帶有木質香;與主成分二正相關且成分負荷量較大的化合物為異蘭烯、二氫獼猴桃內酯,帶有花香、水果香。供試品種紅茶品質大致上以對照品種高於永康山茶,尤以台茶18號最高,季節性而言以秋季品質最高。本研究分析氣象對茶葉品質、內容物及芽葉性狀的相關性,希冀提供茶葉生產之參考依據。zh_TW
dc.description.abstractYung-Kang tea does belongs to Taiwan indigenous wild tea, located on the east side of Central Mountain Range. Brewed black tea has special flavor and aroma. Yung-Kang tea is suitable for making black tea, and has the characteristics of high yield and resistable to pests and diseases. ‘TTES No. 24’ was named by pure line selection in 2019. The new lines of Yung-Kang tea are mainly cultivated in Tea Research and Extension Station (TRES) Taitung branch. It is deficiency about the research of the correlation between shoot succulent characteristics, contents and climate factors of Yung-Kang tea. This experiment aims to discuss seasonal changes of shoot succulent characteristics, contents of fresh leaf and made black tea. In order to understand the black tea processing parameters, water content, membrane thermostability (MTS) and activitiy of polyphenol oxidase (PPO) are measured. MTS decreased along with water content during indoor withering. The activity of PPO decreased during first 3 hours, increased after 15-hour indoor withering, then decreased after rolling. Plucking fresh tea leaves of 8 cultivars (lines), including ‘Yung-Kang No. 1’, ‘Yung-Kang No. 5’, ‘Yung-Kang No. 13’, ‘Yung-Kang No. 20’, ‘TTES No. 8’, ‘TTES No. 18’, and ‘TTES No. 21’ in spring, 1st summer, 2nd summer, autumn, winter tea season of 2020, and spring, 1st summer, autumn tea season of 2021. The shoot succulent characteristics of every cultivar (line) were measured, and the internal composition contents of fresh leaf and made black tea, volatile compounds of made black tea, and sense evaluation of brewed black tea were analyzed. Finally, the correlations between quality of tea, contents, shoot succulent characteristics and climate factors were analyzed. The contents and shoot succulent characteristics are affected by cultivars (lines) and climate factors via single factor ANOVA analysis and single liner regression. In terms of contents, there is positive correlation between temperature, insolation, insolation duration and content of polyphenol, catechin isomers and caffeine of fresh leaf, there is negative correlation between temperature, insolation, insolation duration and content of amino acid. In terms of shoot succulent characteristics, there is negative correlation between temperature, insolation, insolation duration and length of leaf, width of leaf, there is positive correlation between temperature, insolation, insolation duration and thickness of leaf. There is positive correlation between accumulated precipitation and diameter of internode, length of internode. There are seasonal changes of composition of volatile compounds in all cultivars (lines). In terms of composition of volatile compounds, 55 volatile compounds in spring, 47 volatile compounds in summer, and 64 volatile compounds in autumn are identified. Running principle component analysis (PCA) by relative abundance (REL) of identified volatile compounds. Hexanoic acid-2-hexenyl ester, methyl salicylate, ionone that have flower and mint aroma have positive correlation with principle component 1 (PC1) and more component loading in spring 2021. Longifolene, butylated hydroxytoluene that have woody and mild camphor aroma have positive correlation with principle component 2 (PC2) and more component loading in spring 2021. There is positive correlation between butylated hydroxytoluene that has more component loading and PC1 in summer 2021. There is positive correlation between hexanoic acid-2-hexenyl ester that has more component loading and PC2 in summer 2021. There is positive correlation between butylated hydroxytoluene that has more component loading and PC1 in autumn 2021. There is positive correlation between copaene, 5,6,7,7-tetrahydro-4,4,7-trimethyl-2(4H)-benzofuranone that have flower, fruity aroma, more component loading and PC2. The quality of black tea made of control cultivars is higher than Yung-Kang tea, especially black tea made of ‘TTES No. 18’ has highest quality in autumn 2021. This experiment want to provide reference of tea production via correlation between quality of tea, contents and shoot succulent characteristics.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:29:21Z (GMT). No. of bitstreams: 1
U0001-1809202222455500.pdf: 3312403 bytes, checksum: 9bcf45a20dd2f80d90229e140e28f2f0 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iv 目錄 vii 表目錄 xi 圖目錄 xvi 第一章、前言 1 第二章、文獻回顧 3 一、茶葉種類 3 二、台灣山茶的發展史 4 三、永康山茶與永康1號山茶 6 四、紅茶製程 7 (一)茶菁採摘 7 (二)室內萎凋 8 (三)揉捻 9 (四)發酵 9 (五)乾燥 10 五、茶葉的內容物及品質指標 10 (一)非揮發性物質 10 (二)揮發性化合物 12 (三)茶葉感官品評 15 六、氣候及芽葉性狀與茶葉內容物及品質之關係 15 七、製茶過程中的多元酚氧化酶活性變化 17 八、細胞膜熱穩定性 18 第三章、材料與方法 19 一、植物材料 19 二、紅茶萎凋過程失水率、細胞膜穩定性與多元酚氧化酶之變化 19 三、紅茶製作與芽葉性狀之調查與分析 19 四、樣品分析與測試 20 (一)茶湯萃取液製備 20 (二)總游離胺基酸含量測定:茚三酮法 21 (三)多元酚類含量測定:酒石酸亞鐵法 21 (四)沒食子酸、咖啡因、兒茶素及其異構物含量分析: 22 (五)細胞膜熱穩定性測定 23 (六)多元酚氧化酶活性測定 24 (七)芽葉性狀調查 24 (八)揮發性化合物分析 25 (九)紅茶感官品評 25 五、藥品、試劑及其他耗材 26 (一)多元酚類含量測定 26 (二)總游離胺基酸含量測定 26 (三)沒食子酸、咖啡因、兒茶素及其異構物含量分析: 27 (四)揮發性成份分析 27 (五)膜穩定性分析 27 (六)多元酚氧化酶分析 27 六、實驗儀器與分析條件 28 七、統計方法: 28 第四章、結果 30 一、氣象資料分析 30 二、紅茶茶葉感官品評成績及感官品評成績與氣象因子、紅茶內容物含量之迴歸關係 30 三、茶葉內容物含量之季節性變化與比較 31 (一) 鮮葉總多元酚類、總游離胺基酸類以及咖啡因含量季節與品種間之複因子分析 31 (二) 鮮葉總多元酚類、總游離胺基酸類以及咖啡因含量之單因子分析 32 (三) 紅茶總多元酚類、總游離胺基酸類以及咖啡因含量之複因子分析 33 (四) 紅茶總多元酚類、總游離胺基酸類以及咖啡因含量之單因子分析 34 (五)沒食子酸、兒茶素及其異構物含量之分析 35 四、芽葉性狀調查 39 (一) 芽葉性狀之複因子分析 39 (二) 芽葉性狀之單因子分析 40 五、茶葉內容物含量、芽葉性狀與氣象因子的迴歸關係 41 (一)內容物含量與氣象因子之迴歸關係 41 (二)芽葉性狀與氣象因子之迴歸關係 42 六、紅茶揮發性化合物之季節性變化與比較 44 七、室內萎凋時間對茶菁含水率及細胞膜熱穩定性之影響 47 八、室內萎凋時間對茶菁含水率及多元酚氧化酶活性之影響 48 第五章、討論 49 一、鮮葉內容物含量之季節性變化以及與氣象因子之迴歸關係 49 二、紅茶內容物含量之季節性變化 52 三、芽葉性狀之季節性變化 53 四、紅茶揮發性化合物之季節性變化 54 五、紅茶感官品評成績之季節性變化 56 六、萎凋過程茶菁含水量對細胞膜熱穩定及多元酚氧化酶之影響 57 第六章、結論 59 表 61 圖 135 參考文獻 145 附錄 155
dc.language.isozh-TW
dc.title永康山茶芽葉性狀,內容物與品質之季節性變化zh_TW
dc.titleSeasonal Changes of Succulent Shoot Characteristics, Internal Composition and Tea Quality of Yung-Kang Tea (Camellia sinensis f. formosensis)en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee阮素芬(Su-Feng Roan),林書妍(Shu-Yen Lin)
dc.subject.keyword永康山茶,氣象因子,茶葉內容物,芽葉性狀,細胞膜熱穩定性,多元酚氧化酶活性,zh_TW
dc.subject.keywordYung-Kang tea,climate factor,content of tea leaf,shoot succulent characteristic,membrane thermostability,activity of polyphenol oxidase,en
dc.relation.page164
dc.identifier.doi10.6342/NTU202203540
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
dc.date.embargo-lift2022-09-27-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1809202222455500.pdf3.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved