請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85922完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信嘉(Hsin-Chia Lu) | |
| dc.contributor.author | Yu-Yang Lin | en |
| dc.contributor.author | 林于揚 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:29:03Z | - |
| dc.date.copyright | 2022-09-23 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-22 | |
| dc.identifier.citation | [1] D. J. 解析通訊技術:3G、4G、5G背後的科學意義(上). Available: http://technews.tw/2015/10/06/3g%E3%80%814g%E3%80%815g-meaning/ [2] 吳鋼. 淺談4G. Available: http://yuweneve.pixnet.net/blog/post/43617168-%E3%80%90%E8%AD%B0%E9%A1%8C%E3%80%91%E6%B7%BA%E8%AB%874g [3] Sogou:科學百科,講科學更專業之毫米波詳細介紹篇 Available: https://baike.sogou.com/kexue/d19764409761015047.htm?ch=kexue.tree.node [4] 蕭 佑 和 . 只 要 九 張 圖 , 看 懂 什 麼 是 5G. Available: https://dahetalk.com/2019/03/01/%e3%80%905g%e7%a7%91%e6%99%ae%e3 %80%91%e5%8f%aa%e8%a6%819%e5%bc%b5%e5%9c%96%ef%bc%8c%e7 %9c%8b%e6%87%82%e4%bb%80%e9%ba%bc%e6%98%af5g%ef%bd%9c%e 5%a4%a7%e5%92%8c%e6%9c%89%e8%a9%b1%e8%aa%aa/ [5] 紀 鈞 翔 . 5G 行 動 通 訊 之 毫 米 波 相 位 陣 列 天 線 系 統 . Available:https://baike.sogou.com/kexue/d19764409761015047.htm?ch=kexue.tree.node [6] D. Kholodnyak, E. Serebryakova, I.vendik and O. Vendik, 'Broadband digital phase shifter based on switchable right- and left-handed transmission line sections,' IEEE Microwave and Wireless Components Letters, vol. 16, no. 5, pp. 258-260, May 2006. [7] F. Ellinger, R. Vogt, and W. Bachtold, 'Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining,' IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481-486, April 2002. [8] W. T. Li, Y. C. Chiang, J. H. Tsai, H. Y. Yang, J. H. Cheng, and T. W. Huang, '60- GHz 5-bit phase shifter with integrated VGA phase-error compensation,' IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, Mar. 2013. [9] J. H. Tsai, C. K. Liu, and J. Y. Lin, 'A 12 GHz 6-bit switch-type phase shifter MMIC,' 2014 44th European Microwave Conference, pp. 1916-1919, Oct. 2014. [10] T. Yu and G. M. Rebeiz, 'A 24 GHz 6-bit CMOS phased-array receiver,' IEEE Microwave and Wireless Components Letters, vol. 18, no. 6, pp. 422-424, June 2008. [11] T. Yu and G. M. Rebeiz, 'A 22~24 GHz 4-element CMOS phased array with onchip coupling characterization,' IEEE J. Solid-State Circuits vol. 43, no. 9, pp. 2134-2143, Sep. 2008. [12] I. S. Song, J. G. Lee, G. Yoon, and C. S. Park, 'A low power LNA-phase shifter with vector sum method for 60 GHz beamforming receiver,' IEEE Microwave and Wireless Components Letters, vol. 25, no. 9, pp. 612-614, July 2015. [13] C. W. Wang, H. S. Wu, and C. K. C. Tzuang, 'CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-band,' IEEE Transactions on Microwave and Theory and Techniques, vol. 59, no. 7, pp. 1778-1786, July 2011. [14] Y.-T. Chang, Z.-W Ou, H. Alsuraisry, A. Sayed and H.-C Lu, 'A 28-GHz low-power vector-sum phase shifter using biphase modulator and current reused Technique,' IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, Nov. 2018. [15] P.-J Peng, “Design of phase shifter for microwave and millimeter-wave applications,” Graduate Institute of Communication Engineering, Master Thesis, National Taiwan University, June 2010. [16] C. W. Wang, H. S. Wu, and C. K. C. Tzuang, 'CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-band,' IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 7, pp. 1778-1786, July 2011. [17] B. Razavi, RF Microelectronics, 2nd ed. Paul Boger, 2011. [18] P.-H Lo, C.-C Lin, H.-C Kuo and H.-R Chuang, 'A Ka-band CMOS low-phase-variation variable gain amplifier with good matching capacity,' 2012 9th European Radar Conference, pp. 532-535, Oct. 2012. [19] F. Ellinger, U. Jorges, U. Mayer and R. Eickhoff, 'Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,' IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1885-1894, Aug. 2009, doi: 10.1109/TMTT.2009.2025415. [20] Y.-T. Chang, Y.-N. Chen, and H.-C. Lu, 'A 38 GHz low power variable gain LNA using PMOS current-steering device and G m-boost technique,' 2018 Asia-Pacific Microwave Conference (APMC), pp. 654-656, Nov. 2018. [21] L. M. Devlin and B. J. Minnis, 'A versatile vector modulator design for MMIC,' IEEE International Digest on Microwave Symposium(IMS), pp. 519-521 vol.1, May 1990. [22] M. Chongcheawchamnan, S. Bunnjaweht, D. Kpogla, D. Lee, and I. D. Robertson, 'Microwave I-Q vector modulator using a simple technique for compensation of FET parasitics,' IEEE Transactions on Microwave Theory and Techniques , vol. 50, no. 6, pp. 1642-1646, June 2002. [23] H. S. Wu, C. W. Wang, J. G. Ma, and C. K. Tzuang, 'A K-band CMOS monopulse comparator incorporating the phase-invertible variable attenuator,' 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 249-251, Jan. 2013. [24] A. E. Ashtiani, N. Sueng-Il, A. d'Espona, S. Lucyszyn, and I. D. Robertson, 'Direct multilevel carrier modulation using millimeter-wave balanced vector modulators,' IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2611-2619, Dec. 1998. [25] K. Koh and G. M. Rebeiz, '0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays,' IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007. [26] G. Shin, Jae. Kim and Hyun Oh, 'Low insertion loss, compact 4-bit phase shifter in 65 nm CMOS for 5G Applications,' IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 37-39, Jan. 2016, doi: 10.1109/LMWC. 2015.2505624. [27] F. Akbar and A. Mortazawi, 'A frequency tunable 360° analog CMOS phase shifter with an adjustable amplitude,' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 12, pp. 1427-1431, Dec. 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85922 | - |
| dc.description.abstract | 本論文提出一操作於 Ka 頻帶之數位控制主動式向量合成器(vector sum phase shifter, VSPS),相移器主要操作於Ka頻段,目的為應用於5G無線通訊系統(5th generation wireless system)的波束成型技術。 本論文之相移器使用相位可反相可調衰減器(phase-invertible variable attenuator, PIVA)及90°正交耦合器來產生正交(in-phase and quadrature , IQ)訊號,將產生的正交訊號透過可變增益放大器(variable gain amplifier)調整訊號的振幅,最後透過功率合成器產生需要的相位,其中使用電流式數位類比轉換器(current DAC)控制可變增益放大器,並使用解碼器控制電流式數位類比轉換器以減少佈局時的PAD數量。使用到的數位訊號包含解碼器、衰減器輸入、PIVA控制四相位輸入,總共8個數位訊號實現4位元的相移器。 本論文將呈現兩顆晶片,在模擬設計階段,其中一顆為七種狀態的數位控制可變增益放大器,在28GHz時其增益範圍為14dB, 且在狀態切換時的相位變化小於10°。第二顆為數位控制4位元主動向量和式相移器,在28GHz時16種相移狀態平均增益為4.65dB,均方根相位誤差小於3.5°、均方根增益誤差小於0.8dB,直流功耗約為30mW。 此論文電路均採用台積電0.18μm CMOS製程實現,兩顆晶片皆因佈局因素與模擬出現誤差,且於論文中除錯完成。第一顆晶片數位控制可變增益放大器中心頻為21GHz,最大增益為-1.49dB,增益範圍約為25dB。第二顆晶片主動向量和式相移器中的可變增益放大器也頻偏至21GHz,但相移器在28GHz時仍具相移功能,最大增益為-29.84dB,其均方根相位誤差約為5.9°、均方根增益誤差約為0.85dB,且直流功耗約為29mW。 | zh_TW |
| dc.description.abstract | This thesis proposes a digital vector sum phase shifter (VSPS) operating at Ka-band. This work is designed for the beam-forming in 5th generation wireless system. The phase shifter in this thesis uses a phase-invertible variable attenuator (PIVA) and 90°coupler to achieve in-phase and quadrature (I/Q) signals then, uses variable gain amplifier (VGA) to adjust the amplitude of I/Q signals, and finally combines I/Q signals by power combiner to generates the required phase. A current DAC is used to control the variable gain amplifier, and a decoder is used to control this current DAC to reduce the number of pads in chip layout. The digital signals used include decoder, attenuator in variable gain amplifier, PIVA control for four phase, total of 8 digital signals to realize a 4-bit VSPS. This thesis will present two chips, the first chip is a digitally controlled variable gain amplifier with seven gain states. Its gain range is 14dB, and the phase variation among gain state switching is less than 10°.The second chip is a digitally controlled 4-bit vector sum phase shifter. The average gain of 16 states in simulation is 4.65dB, the RMS phase error is less than 3.5°, RMS gain error is less than 0.8dB at 28GHz. DC power consumption is 30mW. The circuits in this thesis are all implemented by TSMC’s 180nm CMOS process. These two chips have errors in layout, and these errors are debugged in the thesis. The center frequency of the first chip is shifted to 21GHz in measurement, and its gain range is about 25dB with maximum gain at -1.49dB. The center frequency of digitally controlled VGA in second chip also shifted to 21GHz, but the phase shifter still works at 28GHz. Its maximum gain is -29.84dB at 28GHz with RMS phase error at 5.9°, RMS amplitude error at 0.85dB, and DC power consumption is about 29mW. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:29:03Z (GMT). No. of bitstreams: 1 U0001-2009202209423800.pdf: 12348203 bytes, checksum: a1d491993ab5ce40d56ff040a1d55306 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xi Chapter 1 緒論 1 1.1 研究動機與背景 1 1.2 文獻回顧 4 1.3 論文貢獻 7 1.4 章節介紹 7 Chapter 2 相移器基本電路介紹 8 2.1 簡介 8 2.2 相移器重要參數 8 2.2.1 相位差 8 2.2.2 插入損耗、振幅誤差 8 2.2.3 RMS相位差 9 2.2.4 RMS振幅差 9 2.3 相移器電路簡介 9 2.3.1 傳輸式相移器 9 2.3.2 反射式相移器 10 2.3.3 相位可反相可調衰減器 10 2.3.4 向量和式相移器 11 2.4 可變增益放大器 12 2.4.1 偏壓控制可變增益放大器 12 2.4.2 低相位變化可變增益放大器 13 2.4.3 N型電流導向可變增益放大器 14 2.4.4 P型電流導向可變增益放大器 15 Chapter 3 本論文使用之可變增益放大器 18 3.1 簡介 18 3.2 增益範圍估算 19 3.3 可變增益放大器 20 3.3.1 可變增益放大器架構 20 3.3.2 第一級可變增益放大器 21 3.3.3 二階可變增益放大器模擬 29 3.4 電流式DAC 31 3.5 全電路模擬 35 3.6 電路佈局與模擬 39 3.6.1 電路佈局 39 3.6.2 實際電路模擬 39 Chapter 4 主動式向量和式相移器電路設計 47 4.1 電路介紹 47 4.2 被動電路設計 48 4.2.1 正交耦合器設計 48 4.2.2 PIVA耦合器設計 49 4.2.3 被動電路部分模擬結果 51 4.3 相移器主動電路設計 53 4.3.1 功率合成器設計 53 4.3.2 可變增益放大器設計 54 4.4 相移器整體佈局與模擬 56 4.4.1 電路佈局 56 4.4.2 相移器整體模擬 57 Chapter 5 電路量測 65 5.1 量測準備 65 5.1.1 印刷版電路設計 65 5.1.2 偏壓使用 67 5.1.3 量測環境 67 5.2 量測結果 68 5.2.1 數位控制可變增益放大器 68 5.2.2 主動向量和式相移器 71 5.3 問題與討論 80 5.3.1 數位控制可變增益放大器 80 5.3.2 主動向量和式相移器 87 Chapter 6 結論與未來展望 93 6.1 結論 93 6.2 未來展望 93 參考文獻 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | Ka 頻帶 | zh_TW |
| dc.subject | 向量合成式相移器 | zh_TW |
| dc.subject | 5G通訊系統 | zh_TW |
| dc.subject | 均方根相位誤差 | zh_TW |
| dc.subject | 相移器 | zh_TW |
| dc.subject | 均方根增益誤差 | zh_TW |
| dc.subject | 數位控制VGA | zh_TW |
| dc.subject | Ka-band | en |
| dc.subject | phase shifter | en |
| dc.subject | vector-sum phase shifter | en |
| dc.subject | RMS amplitude error | en |
| dc.subject | digital control VGA | en |
| dc.subject | 5G communication system | en |
| dc.subject | RMS phase error | en |
| dc.title | 使用數位控制可變增益放大器之4位元Ka頻段主動向量和式相移器 | zh_TW |
| dc.title | A 4-bit Ka-band Active Vector-Sum Phase Shifter using Digital Controlled VGA | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡政翰(Jeng-Han Tsai),張譽騰(Yu-Teng Chang),王雲杉(Yun-Shan Wang) | |
| dc.subject.keyword | 相移器,向量合成式相移器,Ka 頻帶,數位控制VGA,5G通訊系統,均方根增益誤差,均方根相位誤差, | zh_TW |
| dc.subject.keyword | phase shifter,vector-sum phase shifter,Ka-band,digital control VGA,5G communication system,RMS amplitude error,RMS phase error, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU202203621 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-23 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2009202209423800.pdf | 12.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
