請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85921
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭光宇(Guang-Yu Guo) | |
dc.contributor.author | Ting-Yun Hsieh | en |
dc.contributor.author | 謝定耘 | zh_TW |
dc.date.accessioned | 2023-03-19T23:29:01Z | - |
dc.date.copyright | 2022-09-27 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-22 | |
dc.identifier.citation | [1] N. P. Armitage, E. J. Mele and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90, 015001 (2018). [2] Y. Sun, Y. Zhang, C. Felser, and B. Yan, Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals,Phys. Rev. Lett. 117, 146403 (2016). [3] T. Ng, Y. Luo, J. Yuan, Y. Wu, H. Yang, and L. Shen, Origin and enhancement of the spin Hall angle in the Weyl semimetals LaAlSi and LaAlGe, Phys. Rev. B 104, 014412 (2021). [4] Y. Yen and G.-Y. Guo, Tunable large spin Hall and spin Nernst effects in the Dirac semimetals ZrXY (X = Si, Ge; Y = S, Se, Te), Phys. Rev. B 101, 064430 (2020). [5] B. B. Prasad and G.-Y. Guo, Tunable spin Hall and spin Nernst effects in Dirac line-node semimetals XCuYAs (X = Zr, Hf; Y = Si, Ge), Phys. Rev. Materials 4, 124205 (2020). [6] F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore, Quantized circular photogalvanic effect in Weyl semimetals, Nat. Commun. 8, 15995 (2017). [7] Q. Xu, Y. Zhang, K. Koepernik, W. Shi, J. van den Brink, C. Felser and Y. Sun, Comprehensive scan for nonmagnetic Weyl semimetals with nonlinear optical response, npj Comput. Mater 6, 32 (2020). [8] C. Le, Y. Zhang, C. Felser, and Y. Sun, Ab initio study of quantized circular photogalvanic effect in chiral multifold semimetals, Phys. Rev. B 102, 121111(R)(2020) [9] D. Rees, K. Manna, B. Lu, T. Morimoto, H. Borrmann, C. Felser, J. E. Moore, D. H. Torchinsky and J. Orenstein, Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi, Sci. Adv. 6, eaba0509 (2020) [10] H. Li, S. Xu, Z.-C. Rao, L.-Q. Zhou, Z.-J. Wang, S.-M. Zhou, S.-J. Tian, S.-Y. Gao, J.-J. Li, Y.-B. Huang, H.-C. Lei, H.-M. Weng, Y.-J. Sun, T.-L. Xia, T. Qian, and H. Ding, Chiral fermion reversal in chiral crystals, Nat. Commun. 10, 5505 (2019). [11] B. Zhao, D. Khokhriakov, Y. Zhang, H. Fu, B. Karpiak, A. Md. Hoque, X. Xu, Y. Jiang, B. Yan, and S. P. Dash, Observation of charge to spin conversion in Weyl semimetal WTe2 at room temperature, Phys. Rev. Research 2, 013286 (2020). [12] P. Tang, Q. Zhou, and S.-C. Zhang, Multiple Types of Topological Fermions in Transition Metal Silicides, Phys. Rev. Lett. 119, 206402 (2017). [13] Z. Rao, H. Li, T. Zhang, S. Tian, C. Li, B. Fu, C. Tang, L. Wang, Z. Li, W. Fan, J. Li, Y. Huang, Z. Liu, Y. Long, C. Fang, H. Weng, Y. Shi, H. Lei, Y. Sun, T. Qian, and H. Ding, Observation of unconventional chiral fermions with long Fermi arcs in CoSi, Nature 567, 496 (2019). [14] Z. Ni, K. Wang, Y. Zhang, O. Pozo, B. Xu, X. Han, K. Manna, J. Paglione, C. Felser, A. G. Grushin et al., Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi, Nat. Commun. 12, 154 (2021). [15] Z. Ni, B. Xu, M.-Á. Sánchez-Martínez, Y. Zhang, K. Manna, C. Bernhard, J. W. F. Venderbos, F. de Juan, C. Felser, A. G. Grushin et al, Linear and nonlinear optical responses in the chiral multifold semimetal RhSi, npj Quantum Mater. 5, 96 (2020). [16] M. I. D'yakonov and V. I. Perel, Spin orientation of electrons associated with the interband absorption of light in semiconductors, Sov. Phys. JETP 33, 1053 (1971). [17] S. Cheng, Y. Xing, Q.-F. Sun, and X. C. Xie, Spin Nernst effect and Nernst effect in two-dimensional electron systems, Phys. Rev. B 78, 045302 (2008). [18] R. W. Boyd, Nonlinear Optics, 3rd ed. (2008) [19] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical Review 136, B864 (1964). [20] W. Kohn, and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133 (1965). [21] J. P. Perdew and A. Zunger, Self¬interaction correction to density¬functional approx-imations for many¬electron systems, Physical Review B 23, 5048 (1981). [22] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996) [23] C. S. Wang, B. M. Klein, and H. Krakauer, Theory of Magnetic and Structural Ordering in Iron, Phys. Rev. Lett. 16, 1852 (1985) [24] G.Y.Guo, H. Ebert, W.M.Temmerman, K.Schwarz and P.Blaha, Relativistic effects on the structural and magnetic properties of iron, Solid State Comm. 79, 121 (1991) [25] G. Y. Guo, and H. H. Wang, Gradient-corrected density functional calculation of structural and magnetic properties of BCC, FCC and HCP Cr, J. Magn. Magn. Mater. 209 (2000) 98–99 [26] C. Kittel, Introduction to Solid State Physics. 8, (2004). [27] G. Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, Intrinsic Spin Hall Effect in Platinum: First-Principles Calculations, Phys. Rev. Lett. 100, 096401 (2008). [28] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010). [29] D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Berry-Phase Effect in Anomalous Thermoelectric Transport, Phys. Rev. Lett. 97, 026603 (2006). [30] C. Aversa and J. Sipe, Nonlinear optical susceptibilities of semiconductors: Results with a length¬-gauge analysis, Physical Review B 52, 14636 (1995). [31] J. Sipe and A. Shkrebtii, Second¬order optical response in semiconductors, Physical Review B 61, 5337 (2000). [32] J. Ahn, G.¬Y. Guo, and N. Nagaosa, Low¬frequency divergence and quantum ge-ometry of the bulk photovoltaic effect in topological semimetals, Physical Review X 10, 041041 (2020). [33] I. V. Kavich and L. P. Shevchuk, X-ray diffraction and X-ray spectrum examinations of the Co-Si-Ge system alloys, Ukrainskii Fizicheskii Zhurnal (Russian Edition) 23, 624 (1978). [34] P. Demchenko, J. Kończyk, O. Bodak, R. Matvijishyn, L. Muratova, and B. Marciniak, Single crystal investigation of the new phase Er0.85Co4.31Si and of CoSi, Chem. Met. Alloys 1, 50 (2008). [35] H. Takizawa, T. Sato, T. Endo, and M. Shimada, High-Pressure Synthesis and Electrical and Magnetic Properties of MnGe and CoGe with the Cubic B20 Structure, J. Solid State Chem. 73, 40 (1988). [36] I. Engström and T. Johnsson, Least-squares Refinement of the Structure of RhSi (FeSi-type), Acta Chem. Scand. 19, 1508 (1965). [37] V. I. Larchev and S. V. Popova, The polymorphism of transition metal monogermanides at high pressures and temperatures, J. Less-Common Met. 87, 53 (1982). [38] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558 (1993). [39] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996). [40] J. H. Ryoo, C.-H. Park, and I. Souza, Computation of intrinsic spin Hall conductivities from first principles using maximally localized Wannier functions, Phys. Rev. B 99, 235113 (2019). [41] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84, 1419 (2012). [42] G. Pizzi et al., Wannier90 as a community code: new features and applications, J. Phys.: Condens. Matter 32, 165902 (2020). [43] Q. S. Wu, S. N. Zhang, H.-F. Song, M. Troyer and A. A. Soluyanov, WannierTools: An open-source software package for novel topological materials, Comput. Phys. Commun. 224, 405 (2018). [44] S. V. Gallego, J. Etxebarria, L. Elcoro, E. S. Tasci, and J. M. Perez-Mato, Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server, Acta Cryst. A75, 438 (2019). [45] E. Skoug, C. Zhou, Y. Pei and D. T. Morelli, High thermoelectric power factor in alloys based on CoSi, Appl. Phys. Lett. {94}, 022115 (2009). [46] N. Kanazawa, Y. Onose, Y. Shiomi, S. Ishiwata and Y. Tokura, Band-filling dependence of thermoelectric properties in B20-type CoGe, Appl. Phys. Lett. 100, 093902 (2012). [47] L. Z. Maulana, K. Manna, E. Uykur, C. Felser, M. Dressel and A. V. Pronin, Phys. Rev. Research 2, 023018 (2020). [48] V. A. Sidorov, A. E. Petrova, N. M. Chtchelkatchev, M. V. Magnitskaya, L. N. Fomicheva, D. A. Salamatin, A. V. Nikolaev, I. P. Zibrov, F. Wilhelm, A. Rogalev and A. V. Tsvyashchenko, Magnetic, electronic and transport properties of the high-pressure synthesized chiral magnets Mn1-xRhxGe, Phys. Rev. B 98 98, 125121 (2018). [49] H. L. Wang, C. H. Du, Y. Pu, R. Adur, P. C. Hammel and F. Y. Yang, Scaling of spin Hall angle in 3d, 4d, 5d metals from Y3Fe5O12 metal spin pumping, Phys. Rev. Lett. {112}, 197201 (2014). [50] Y. K. Kato, R. C. Gossard and D. D. Awschalom, Observation of the spin Hall effect in semiconductors, Science 306, 1910 (2004). [51] K. Tang, Y.-C. Lau, K. Nawa, Z. Wen, Q. Xiang, H. Sukegawa, T. Seki, Y. Miura, K. Takanashi, and S. Mitani, Spin Hall effect in a spin-1 chiral semimetal, Phys. Rev. Research 3, 033101 (2021). [52] S. Meyer, Y.-T. Chen, S. Wimmer, M. Althammer, T. Wimmer, R. Schlitz, S. Geprägs, H. Huebl, D. Ködderitzsch, H. Ebert, G. E. W. Bauer, R. Gross, and S. T. B. Goennenwein, Observation of the spin Nernst effect, Nat. Mater. 16, 977 (2017). [53] Z. Li, T. Iitaka, H. Zeng, and H. Su, Optical response of the chiral topological semimetal RhSi, Phys. Rev. B 100, 155201. (2019) [54] Y. Zhang, H. Ishizuka, J. van den Brink, C. Felser, B. Yan, and N. Nagaosa, Photogalvanic Effect in Weyl Semimetals from First Principles, Phys. Rev. B 97, 241118(R) (2018). [55] L. Wu, S. Patankar, T. Morimoto, N. L. Nair, E. Thewalt, A. Little, J. G. Analytis, J. E. Moore, and J. Orenstein, Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals, Nat. Phys. 13, 350. (2017) [56] B. Lu, S. Sayyad, M. Á. Sánchez-Martínez, K. Manna, C. Felser, A. G. Grushin, and D. H. Torchinsky, Second-harmonic generation in the topological multifold semimetal RhSi, Phys. Rev. Research 4, L022022 (2022) [57] D. MacNeill, G. M. Stiehl, M. H. D. Guimaraes, R. A.Buhrman, J. Park, and D. C. Ralph, Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers, Nat. Phys. 13, 300 (2017). [58] S. Shi, S. Liang, Z. Zhu, K. Cai, S. D. Pollard, Y. Wang, J. Wang, Q. Wang, P. He, J. Yu, G. Eda, G. Liang, and H. Yang, All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures, Nat. Nanotechnol. 14, 945 (2019). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85921 | - |
dc.description.abstract | 外爾半金屬因為能帶中有被視為貝里曲率磁單極的特殊交錯而在近幾年受到注意。過渡金屬矽化物,包括一矽化鈷、一矽化銠、一鍺化鈷和一鍺化銠,是一組缺少鏡面對稱性質的掌性外爾半金屬。因此,這些材料的外爾結點坐落於不同的能階上。多重簡併並且擁有較大陳數的外爾結點被預言存在於這些材料中。因此,這些材料成為一個研究外爾結點跟物理性質關係的好平台。 在這個論文中,我們系統性地透過第一原理計算研究以上材料的自旋霍爾效應,自旋能斯特效應還有非線性光學性質。在我們的研究中,我們展示了一鍺化銠在所有材料中擁有最高的自旋霍爾電導率-139 (ħ/e)(S/cm),並且在室溫下一矽化鈷和一鍺化鈷擁有大的自旋能斯特電導率,分別為-1.00 (ħ/e)(A/m K) 和 -1.25 (ħ /e) (A/m K)。非線性光學的部分,我們計算了二次階波產生還有體光伏效應。我們發現偏移電流會在低能量的區域產生峰值,而這個峰值並沒有出現在線性光學上。並且,透過我們的計算我們揭露透過調整費米能量,有可能得到被預測會發生在這個材料上的量子體光伏效應。 | zh_TW |
dc.description.abstract | Weyl semimetals have received a lot of attention in recent years because of the unique band crossing which can be seen as a monopole of Berry curvature. Among them, transition metal silicides, including CoSi, RhSi, CoGe, and RhGe, form a group of chiral Weyl semimetals with no mirror symmetry. Hence, the pairs of Weyl nodes in these materials are located at different energy levels. Also, multifold Weyl nodes with a large Chern number were predicted in these materials. Therefore, these materials should be a good platform to study the relation between these Weyl nodes and novel physical phenomena. In this thesis, we systematically study the spin Hall effect (SHE), spin Nernst effect (SNE), and nonlinear optical (NLO) effects for the above-mentioned materials by first-principles calculation. We show that the highest spin Hall conductivity (SHC) value among these materials is RhGe with -139 (ħ /e)(S/cm). Also, spin Nernst conductivity (SNC) at room temperature is large for both CoSi and CoGe, with the value of -1.00 (ħ /e)(A/m K and -1.25 (ħ /e)(A/m K), respectively. For NLO, second harmonic generation (SHG) and bulk photovoltaic effect (BPVE) are calculated. We find that linear shift current shows a peak in the low energy region which doesn't appear in the optical conductivity. Also, through our calculation, we reveal that by tuning Fermi energy, it is possible to get quantized circular injection current which was predicted to happen in chiral Weyl semimetals. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:29:01Z (GMT). No. of bitstreams: 1 U0001-2009202209402000.pdf: 4312195 bytes, checksum: 9f8adf5b0488a5f764be0542f8c634f1 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 誌謝 iii 摘要 v Abstract vii 1 Introduction 1 1.1 Multifold chiral Weyl semimetals XY (X=Co, Rh; Y=Si, Ge) . . . . . . . 1 1.2 Spin Hall effect and spin Nernst effect . . . . . . . . . . . . . . . . . . . 4 1.3 Second order nonlinear optics. . . . . . . . . . . . . . . . . . . . . . . 5 2 Theoretical Background 7 2.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Exchange-correlation potential . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Bloch theory and reciprocal lattice . . . . . . . . . . . . . . . . . . . . . 9 2.4 Berry-phase formalism for calculating intrinsic spin Hall conductivity . . 10 2.5 Formula for bulk photovoltaic effect and second harmonic generation . . 11 3 Electronic structure of XY (X=Co, Rh; Y=Si, Ge) 13 3.1 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Spin Hall effect and spin Nernst effect in XY (X=Co, Rh; Y=Si, Ge) 27 4.1 Spin Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Spin Nernst effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Spin Berry curvature analysis . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Nonlinear optical effects in XY (X=Co, Rh; Y=Si, Ge) 43 5.1 Bulk photovoltaic effect. . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 Second harmonic generation . . . . . . . . . . . . . . . . . . . . . . . . 54 6 Conclusion 59 Bibliography 61 | |
dc.language.iso | en | |
dc.title | 第一原理計算研究掌性外爾半金屬的自旋傳導及非線性光學性質 | zh_TW |
dc.title | An ab-initio study of spin transports and nonlinear optics of chiral Weyl semimetals XY (X=Co, Rh; Y=Si, Ge) | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李啟正(Chi-Cheng Lee),詹楊皓(Yang-hao Chan),薛宏中(Hung-Chung Hsueh),許琇娟 (Hsiu-Chuan Hsu) | |
dc.subject.keyword | 外爾半金屬,自旋霍爾效應,自旋能斯特效應,光生伏打效應,二階非線性光學,第一原理計算, | zh_TW |
dc.subject.keyword | Weyl semimetal,spin Hall effect,spin Nernst effect,bulk photovoltaic effect,second order nonlinear optics,first principle calculation, | en |
dc.relation.page | 66 | |
dc.identifier.doi | 10.6342/NTU202203620 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-23 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-27 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2009202209402000.pdf | 4.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。