請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85887
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 韓仁毓(Jen-Yu Han) | |
dc.contributor.author | JIA-LONG GUO | en |
dc.contributor.author | 郭佳靇 | zh_TW |
dc.date.accessioned | 2023-03-19T23:27:44Z | - |
dc.date.copyright | 2022-09-27 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-23 | |
dc.identifier.citation | Alharith, A. A. S. A., & Samak, Y. A. A., 2018. Fighting terrorism more effectively with the aid of GIS: Kingdom of Saudi Arabia case study. American journal of geographic information system, 7(1), 15-31. Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L., 2008. Speeded-up robust features (SURF). Computer vision and image understanding, 110(3), 346-359. Bao, Z., Xing, C., & Liang, X., 2020. Object Detection on Aerial Image by Using High-Resolutuion Network. In 2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT) (pp. 111-114). IEEE. GISGeography, 2022. Aerial Photography vs Orthophotography: What’s the Difference?. Retrieved June 17, 2022 from https://gisgeography.com/aerial-photography-vs-orthophotography/. Girshick, R., Donahue, J., Darrell, T., & Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587). Girshick, R., 2015. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448). Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D., 2002. Novel algorithms for remote estimation of vegetation fraction. Remote sensing of Environment, 80(1), 76-87. Han, D., 2013. Comparison of commonly used image interpolation methods. In Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013) (Vol. 10). He, K., Gkioxari, G., Dollár, P., & Girshick, R., 2017. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969). Jindal, R., & Vatta, S., 2010. Sift: Scale invariant feature transform. IJARIIT, 1, 1-5. Lowe, D. G., 1999. Object recognition from local scale-invariant features. In Proceedings of the seventh IEEE international conference on computer vision (Vol. 2, pp. 1150-1157). IEEE. Lowe, D. G., 2004, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60(2), pp. 91-110. Mayr, W., & Heipke, C., 1988. A contribution to digital orthophoto generation. International Archives of Photogrammetry and Remote Sensing, 27(B11), 430-439. Mikhail, E. M., & Ackermann, F. E., 1976. Observations and Least Squares. IEP. New York., 110-118p. Muja, M., & Lowe, D. G., 2009. Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP (1), 2(331-340), 2. Oyallon, E., & Rabin, J., 2015. An analysis of the SURF method. Image Processing On Line, 5, 176-218. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A., 2016. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). Ren, S., He, K., Girshick, R., & Sun, J., 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28. Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E., 2014a. Elements of Photogrammetry with Applications in GIS. McGraw-Hill Education., 891-896p. Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E., 2014b. Elements of Photogrammetry with Applications in GIS. McGraw-Hill Education., 409p. Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E., 2014c. Elements of Photogrammetry with Applications in GIS. McGraw-Hill Education., 917p. 經濟部水利署水利規劃試驗所,2011。河堤淘空檢測方法之研究。 經濟部水利署水利規劃試驗所,2017。易致災河段潛勢分析及安全監測之研究。 經濟部水利署,2021。水利建造物檢查及安全評估辦法。 王天佑,2014。無人航拍載具開發及防災工程之應用,中國土木水利工程學會會刊,41(3):49-56。 吳國維、陳春伸、陳春宏,2020。無人飛行載具於河川管理應用,營建知訊, (448):29-47。 顏志憲,2015。地面控制點佈設對無人載具產製 DSM 精度影響之研究,國立中興大學水土保持學系所碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85887 | - |
dc.description.abstract | 水利建造物巡檢為確保水利設施安全的例行工作,現行作業方式主要採人力現地調查,耗費大量人力及時間成本,且危險性高,而地形的障礙是導致現場檢查效率低的主因,管理機關為克服地形障礙引入無人飛行載具(Unmanned Aerial Vehicle, UAV)拍攝空拍影像輔助檢查,現行做法單張空拍影像缺乏空間資訊,檢查人員不易判讀檢測位置及量化劣化範圍,不利於評估劣化嚴重性。本研究流程主要分成五大部分,首先影像蒐集與預處理,包含目標區參考底圖及巡檢影像拍攝、目標區數值地形模型、正射影像產製;再單張巡檢影像相機外方位重建,將巡檢影像與參考底圖進行特徵點匹配,萃取地面控制點,以單張空間後方交會平差解算外方位;接著影像缺失判讀,由於研究上限制,以植生偵測模擬劣化樣態做為範例,分別以機器學習方法及遙測指標,辨識水利建造物及植生範圍,計算劣化樣態在水利建造物上比例,作為劣化嚴重性指標;然後巡檢影像幾何校正及劣化區域定量,將多時期巡檢影像根據參考底圖數值地形模型進行正射化糾正,針對非正攝區域則採用影像建模與劣化區定量。最後成果分析與品質評估,對於外方位解算成果、劣化區定量及影像缺失判讀進行正確性驗證。本研究蒐集大安溪義理橋河段水利造物影像,經過幾何校正的巡檢影像,其定位精度可達公分級。影像缺失判讀部分,透過深度學習模型進行水利建造物分類中及遙測指標進行植生分類,結果顯示準確度以達到90%以上,說名影像缺失判讀程序可行,未來可以擴展至各種劣化樣態的偵測。本研究基於UAV影像技術易於執行的標準化作業流程,並從影像中獲取足夠空間資訊以輔助判斷建造物安全性,發展可以高效率且準確定性定量的技術,提升水利造物調查效率,在河川防災及整治中能夠有所助益。 | zh_TW |
dc.description.abstract | Hydraulic structure facility requires routine inspection to ensure the safety of the structure. The traditional inspection methods are mainly on-site investigation, which costs a considerable amount of time and human resources and poses high safety risk. The major factor that affects the efficiency of the inspection is the terrain where the structure resided. To overcome this obstacle, Unmanned Aerial Vehicle (UAV) was introduced, which can take aerial images remotely to assist the task. However, pure aerial images often lack sufficient spatial information and thus make the inspector unable to precisely identify the position, the size as well as the area of the deterioration on the hydraulic structure structures, increasing the difficulty in documenting the severity of the deterioration. This research is divided in five parts: first, image collection and pre-processing, including reference base map definition, inspection image acquisition using UAV and the production of Digital Surface Model (DSM) and orthoimage of the target area; next, the computation of the camera’s exterior orientation parameters. By performing feature points matching between the inspection image and the reference base map, one can extracts the ground control points, and solve for the parameters through Single Photo Resection. Third, we employ both machine learning approach and remote sensing indices to identify the degradation of hydraulic structure and surrounding vegetation. The percentage of degradation on the hydraulic structure facility is then calculated and used as an indicator of the deterioration severity. Then, the geometric correction of the inspection images and the quantification of the degraded areas are performed. The multi-period inspection images are orthorectified according to the reference DSM, and thus the degraded areas can be quantified through 3D model reconstruction. And finally, the results are analyzed and evaluated for quality assessment, which include verifying the resultant exterior orientation, image interpretation, and the deterioration area. In this study, we collected inspection images of the hydraulic structure facility around the Yili Bridge. After geometric correction, the positioning accuracy of the image can reach centimeter-level. As for the image interpretation section, we utilized machine learning approach to identify and classify the hydraulic structure facility and remote sensing index to classify vegetation area. The results show that the classification accuracy is able to achieve over 90%. This study is based on the standardized and easy-to-implement process of UAV imagery technology, allowing us to obtain sufficient spatial information from the images to assist in determining the safety of structures. With this we can develop a highly efficient and accurate method to improve the efficiency hydraulic structure facility inspection, which would be useful in river disaster prevention and remediation. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:27:44Z (GMT). No. of bitstreams: 1 U0001-2109202200291700.pdf: 6503932 bytes, checksum: b4589ad4571f14db04cac4290528e00d (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 目錄 第一章 緒論1 1.1 研究背景1 1.2 研究動機與目的3 1.3 論文架構4 第二章 文獻回顧5 2.1水利建造物巡檢相關規定與傳統巡檢方式5 2.1.1相關法規介紹5 2.1.2傳統水利建造物巡檢方式6 2.1.3目前防洪構造物安全監測方法7 2.2無人機空間測繪技術應用9 2.3空拍影像建構三維空間資訊10 2.3.1特徵萃取(Feature Extraction)10 2.3.2特徵匹配(Feature Matching)10 2.3.3影像空間後方交會(Resection)11 2.3.4影像空間前方交會(Intersection)12 2.3.5數值地表模型12 2.3.6影像正射化(Orthorectification)13 2.4影像物件偵測與分類15 2.4.1植生指標介紹與分類成果評估15 2.4.2深度學習技術與深度學習影像偵測品質評估15 第三章 研究方法18 3.1影像蒐集與預處理19 3.1.1影像蒐集19 3.1.2參考底圖製作21 3.2單張巡檢影像外方位重建21 3.2.1巡檢影像外方位初始值提取22 3.2.2巡檢影像與參考底圖空間定位搜尋優化23 3.2.3巡檢影像與參考底圖特徵點匹配24 3.2.4特徵點像空間與物空間坐標轉換24 3.2.5單張巡檢影像空間後方交會平差25 3.3巡檢影像缺失判讀26 3.3.1物件偵測與分類26 3.3.2物件空間關係計算27 3.4巡檢影像幾何校正及劣化區域定量27 3.4.1巡檢影像影像正射化糾正27 3.4.2巡檢影像建模29 3.5品質評估29 3.5.1單張巡檢影像外方位重建29 3.5.2正射化糾正及影像建模劣化區定量30 3.5.3巡檢影像缺失判讀31 第四章 實驗成果與分析33 4.1影像蒐集與預處理34 4.2單張巡檢影像外方位重建38 4.2.1巡檢影像外方位提取與巡檢影像空間搜尋38 4.2.2巡檢影像與參考底圖特徵點匹配42 4.3巡檢影像缺失判讀46 4.4巡檢影像幾何校正及劣化區域定量52 4.4.1巡檢影像正射化糾正52 4.4.1巡檢影像建模55 第五章 結論及未來工作59 5.1 結論59 5.2 未來工作及建議61 參考文獻62 圖目錄 圖2-1、巡檢表格範例圖(經濟部水利署,2021)6 圖2-2、高差位移及影像正射示意圖(Bolstad, 2016)13 圖2-3、各式內插法示意圖(修改自Han, 2013)14 圖2-4、IoU示意圖16 圖3-1、無人機影像輔助水利建造物檢查作業流程圖19 圖3-2、GSD計算示意圖20 圖3-3、平行水利建造物拍攝巡檢影像示意圖21 圖3-4、單張重建相機外方位流程圖22 圖3-5、地面涵蓋範圍示意圖(修改自Wolf et al., 2014)22 圖3-6、影像空間定位搜尋示意圖24 圖4-1、本研究實驗場域33 圖4-2、本研究採用之無人飛行載具(DJI Phantom 4 pro)34 圖4-3、本研究參考底圖影像拍攝航點及控制點分布圖35 圖4-4、本研究巡檢影像拍攝航點分布圖36 圖4-5、參考底圖影像拍攝成果節錄37 圖4-6、巡檢影像拍攝成果節錄37 圖4-7、DSM(左)及正射影像(右)成果38 圖4-8、本研究巡檢影像地面涵蓋範圍圖39 圖4-9、參考底圖圖磚套疊巡檢影像地面涵蓋範圍圖40 圖4-10、參考底圖圖磚與巡檢影像地面涵蓋範圍空間交集成果圖41 圖4-11、裁切後參考底圖(左)與合併後參考底圖(右)41 圖4-12、特徵點匹配成果示意圖44 圖4-13、巡檢影像測試資料集45 圖4-14、植生分類結果(第2張巡檢影像為例)47 圖4-15、人工數化地真資料(第2張巡檢影像為例)47 圖4-16、機器學習訓練影像標註成果(節錄)48 圖4-17、模型訓練學習曲線圖(左:訓練資料;右:驗證資料) . 48 圖4-18、巡檢影像之水利建造物預測結果(左圖:標註影像;右圖:預測影像)49 圖4-19、水利建造物與植生涵蓋範圍交集運算結果圖(第2張巡檢影像為例) 51 圖4-20、正射化巡檢影像套疊參考底圖52 圖4-21、人工量取特徵點共軛點圖(左:正射化巡檢影像,右:參考底圖)53 圖4-22、巡檢影像正射化不符區域54 圖4-23、更新DSM之正射化巡檢影像55 圖4-24、本研究影像建模使用之連續巡檢影像55 圖4-25、影像建模作業之各階段成果圖56 圖4-26、本研究模型成果品質評估之距離檢核位置圖57 表目錄 表2-1、河床沖刷觀測監測技術性能比較表(經濟部水利署,2017) 8 表4-1、本研究採用之無人飛行載具機體及相機規格 34 表4-2、本研究採用之電腦運算設備 34 表4-3、本研究應用於參考底圖製作之控制點表(單位:公尺) 35 表4-4、參考底圖與巡檢影像在不同GSD下之匹配成功情形42 表4-5、匹配效率分析表 43 表4-6、外方位參數解算成果表 45 表4-7、植生分類混淆矩陣(第2張巡檢影像為例) 47 表4-8、植生分類分類準確度評估表 47 表4-9、水利建造物分類混淆矩陣(第2張巡檢影像為例) 50 表4-10、水利建造物分類準確度評估表 50 表4-11、水利建造物上植生涵蓋範圍比例表 51 表4-12、正射化巡檢影像品質評估 54 表4-13、正射化巡檢影像相對精度評估 54 表4-14、本研究影像建模成果品質評估表 57 | |
dc.language.iso | zh-TW | |
dc.title | 以無人飛行載具影像技術於水利建造物之巡檢研究 | zh_TW |
dc.title | Application of UAV Image Techniques for Hydraulic Structure Facility Inspection | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊明德(Ming-Der Yang),郭重言(Chung-Yen Kuo),何昊哲(Hao-Che Ho) | |
dc.subject.keyword | 水利建造物調查,無人飛行載具,影像處理,機器學習, | zh_TW |
dc.subject.keyword | Hydraulic structure Facility Inspection,Unmanned Aerial Vehicle (UAV),Image processing,Machine learning, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU202203690 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-27 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2109202200291700.pdf | 6.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。