Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85871
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂宥蓉(Yu-Jung Lu)
dc.contributor.authorLi-Chien Changen
dc.contributor.author張立謙zh_TW
dc.date.accessioned2023-03-19T23:27:08Z-
dc.date.copyright2022-09-30
dc.date.issued2022
dc.date.submitted2022-09-23
dc.identifier.citation1 Naik, G. V., Shalae and silver. Advanced Materials 25, 3264-3294 (2013). v, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold 2 Hsieh, Y.-H. et al. Perovskite quantum dot lasing in a gap-plasmon nanocavity with ultralow threshold. ACS nano 14, 11670-11676 (2020). 3 Lan, H.-Y. et al. Gate-tunable plasmon-enhanced photodetection in a monolayer MoS2 phototransistor with ultrahigh photoresponsivity. Nano Letters 21, 3083-3091 (2021). 4 Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters 26, 163-166 (1974). 5 Lu, Y.-J. et al. in CLEO: Science and Innovations. CTh5C. 7 (Optica Publishing Group). 6 Trolle, M. L., Seifert, G. & Pedersen, T. G. Theory of excitonic second-harmonic generation in monolayer MoS 2. Physical Review B 89, 235410 (2014). 7 Chiao, Z.-Y. et al. Full-color generation enabled by refractory plasmonic crystals. Nanophotonics 11, 2891-2899 (2022). 8 Wood, R. W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4, 396-402 (1902). 9 Fano, U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA 31, 213-222 (1941). 10 Ritchie, R. H. Plasma losses by fast electrons in thin films. Physical review 106, 874 (1957). 11 Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216, 398-410 (1968). 12 Kretschmann, E. & Raether, H. Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23, 2135-2136 (1968). 13 Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667-669 (1998). 14 Porto, J. A., García-Vidal, F. J. & Pendry, J. B. Transmission Resonances on Metallic Gratings with Very Narrow Slits. Physical Review Letters 83, 2845-2848 (1999). 15 Martin-Moreno, L. et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Physical review letters 86, 1114 (2001). 16 Liu, W.-C. & Tsai, D. P. Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance. Physical Review B 65 (2002). 17 Maier, S. A. Plasmonics: fundamentals and applications. Vol. 1 (Springer, 2007). 18 Jackson, J. D. (American Association of Physics Teachers, 1999). 19 Sarid, D. & Challener, W. A. Modern introduction to surface plasmons: theory, Mathematica modeling, and applications. (Cambridge University Press, 2010). 20 Yu, H., Peng, Y., Yang, Y. & Li, Z.-Y. Plasmon-enhanced light–matter interactions and applications. npj Computational Materials 5, 1-14 (2019). 21 Kravets, V. G., Kabashin, A. V., Barnes, W. L. & Grigorenko, A. N. Plasmonic surface lattice resonances: a review of properties and applications. Chemical reviews 118, 5912-5951 (2018). 22 Lalisse, A., Tessier, G., Plain, J. & Baffou, G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. The Journal of Physical Chemistry C 119, 25518-25528 (2015). 23 Setoura, K., Werner, D. & Hashimoto, S. Optical scattering spectral thermometry and refractometry of a single gold nanoparticle under CW laser excitation. The Journal of Physical Chemistry C 116, 15458-15466 (2012). 24 Inasawa, S., Sugiyama, M. & Yamaguchi, Y. Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting. The Journal of Physical Chemistry B 109, 3104-3111 (2005). 25 Guler, U., Shalaev, V. M. & Boltasseva, A. Nanoparticle plasmonics: going practical with transition metal nitrides. Materials Today 18, 227-237 (2015). 26 Cao, W. & Elsayed-Ali, H. E. Stability of Ag nanoparticles fabricated by electron beam lithography. Materials Letters 63, 2263-2266 (2009). 27 McMahon, M., Lopez, R., Meyer, H., Feldman, L. & Haglund, R. Rapid tarnishing of silver nanoparticles in ambient laboratory air. Applied Physics B 80, 915-921 (2005). 28 Chan, G. H., Zhao, J., Hicks, E. M., Schatz, G. C. & Van Duyne, R. P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano letters 7, 1947-1952 (2007). 29 Chan, G. H., Zhao, J., Schatz, G. C. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. The Journal of Physical Chemistry C 112, 13958-13963 (2008). 30 Kim, S., Kim, J. M., Park, J. E. & Nam, J. M. Nonnoble‐Metal‐Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives. Advanced Materials 30, 1704528 (2018). 31 Wang, H. et al. Transition metal nitrides for electrochemical energy applications. Chemical Society Reviews 50, 1354-1390 (2021). 32 Catellani, A. & Calzolari, A. Plasmonic properties of refractory titanium nitride. Physical Review B 95, 115145 (2017). 33 Patsalas, P. et al. Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Materials Science and Engineering: R: Reports 123, 1-55 (2018). 34 Naik, G. V. et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Optical Materials Express 2, 478-489 (2012). 35 Gosciniak, J., Atar, F. B., Corbett, B. & Rasras, M. CMOS-compatible titanium nitride for on-chip plasmonic Schottky photodetectors. ACS omega 4, 17223-17229 (2019). 36 Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nature Catalysis 1, 656-665 (2018). 37 Guler, U., Boltasseva, A. & Shalaev, V. M. Refractory plasmonics. Science 344, 263-264 (2014). 38 Cheng, Z. et al. Recent Advances in Transition Metal Nitride‐Based Materials for Photocatalytic Applications. Advanced Functional Materials 31, 2100553 (2021). 39 Dasog, M. Transition Metal Nitrides Are Heating Up the Field of Plasmonics. Chemistry of Materials (2022). 40 Li, W. et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Advanced Materials 26, 7959-7965 (2014). 41 Tillmann, W., Dias, N. F. L., Stangier, D., Tolan, M. & Paulus, M. Structure and mechanical properties of hafnium nitride films deposited by direct current, mid-frequency, and high-power impulse magnetron sputtering. Thin Solid Films 669, 65-71 (2019). 42 Ducheyne, P. Comprehensive biomaterials. Vol. 1 (Elsevier, 2015). 43 Haynes, W. M., Lide, D. R. & Bruno, T. J. CRC handbook of chemistry and physics. (CRC press, 2016). 44 Zhang, J., Oganov, A. R., Li, X. & Niu, H. Pressure-stabilized hafnium nitrides and their properties. Physical Review B 95, 020103 (2017). 45 Boyd, R. W. Nonlinear optics. (Academic press, 2020). 46 Franken, P., Hill, A. E., Peters, C. e. & Weinreich, G. Generation of optical harmonics. Physical Review Letters 7, 118 (1961). 47 Kleinman, D. A. Theory of second harmonic generation of light. Physical Review 128, 1761 (1962). 48 Coxeter, H. S. M. Introduction to geometry. (1961). 49 Zhou, X., Sun, H. & Bai, X. Two-dimensional transition metal dichalcogenides: synthesis, biomedical applications and biosafety evaluation. Frontiers in Bioengineering and Biotechnology 8, 236 (2020). 50 Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. science 306, 666-669 (2004). 51 Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters 105, 136805 (2010). 52 Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications 4, 1-21 (2020). 53 Qiu, D. Y., Felipe, H. & Louie, S. G. Optical spectrum of MoS 2: many-body effects and diversity of exciton states. Physical review letters 111, 216805 (2013). 54 Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics 10, 343-350 (2014). 55 Kolobov, A. V. & Tominaga, J. Two-dimensional transition-metal dichalcogenides. Vol. 239 (Springer, 2016). 56 Li, M.-Y., Chen, C.-H., Shi, Y. & Li, L.-J. Heterostructures based on two-dimensional layered materials and their potential applications. Materials Today 19, 322-335 (2016). 57 Ribeiro-Soares, J. et al. Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical Review B 90, 115438 (2014). 58 Zahid, F., Liu, L., Zhu, Y., Wang, J. & Guo, H. A generic tight-binding model for monolayer, bilayer and bulk MoS2. Aip Advances 3, 052111 (2013). 59 Liu, G.-B., Xiao, D., Yao, Y., Xu, X. & Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chemical Society Reviews 44, 2643-2663 (2015). 60 Kośmider, K., González, J. W. & Fernández-Rossier, J. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Physical Review B 88, 245436 (2013). 61 Liu, H.-L. et al. Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Applied Physics Letters 105, 201905 (2014). 62 Trolle, M. L., Seifert, G. & Pedersen, T. G. Theory of second harmonic generation in few-layered MoS2. arXiv preprint arXiv:1310.0674 (2013). 63 Malic, E. et al. Dark excitons in transition metal dichalcogenides. Physical Review Materials 2, 014002 (2018). 64 Mennel, L. et al. Band nesting in two-dimensional crystals: An exceptionally sensitive probe of strain. Nano letters 20, 4242-4248 (2020). 65 Carvalho, A., Ribeiro, R. & Neto, A. C. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Physical Review B 88, 115205 (2013). 66 Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F. & De Paula, A. M. Observation of intense second harmonic generation from MoS 2 atomic crystals. Physical Review B 87, 201401 (2013). 67 Kumar, N. et al. Second harmonic microscopy of monolayer MoS 2. Physical Review B 87, 161403 (2013). 68 Säynätjoki, A. et al. Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nature communications 8, 1-8 (2017). 69 Flurry, R. L. Symmetry groups: theory and chemical applications. (Prentice Hall, 1980). 70 Arab, A., Davydov, A., Papaconstantopoulos, D. & Li, Q. Monolayer MoS2 Nanoribbons as a Promising Material for Both n-type and p-type Legs in Thermoelectric Generators. Journal of Electronic Materials 45, 5253-5263 (2016). 71 Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano letters 13, 3329-3333 (2013). 72 Aurich, J. & Kirsch, B. (Springer Science+ Business Media Berlin, Germany:, 2014). 73 Velicky, M. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS nano 12, 10463-10472 (2018). 74 Wang, F. & Shen, Y. R. General properties of local plasmons in metal nanostructures. Physical review letters 97, 206806 (2006). 75 West, P. R. et al. Searching for better plasmonic materials. Laser & photonics reviews 4, 795-808 (2010). 76 Pedersen, T. G. & Pedersen, K. Systematic tight-binding study of optical second-harmonic generation in carbon nanotubes. Physical Review B 79, 035422 (2009). 77 Shi, J. et al. Plasmonic enhancement and manipulation of optical nonlinearity in monolayer tungsten disulfide. Laser & Photonics Reviews 12, 1800188 (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85871-
dc.description.abstract  過渡金屬氮化物(Transition Metal Nitrides, TMNs)是一種新穎電漿子材料,為了克服以往常使用的電漿子材料¬的缺點,像是金、銀等傳統電漿子材料的熔點較低,在高溫或是強光照射下容易會因為變形而失去表面電漿子共振,或是鋁在大氣環境下會有氧化的問題,而過渡金屬氮化物具有高熔點、化性穩定、高硬度、低成本等優點,因此非常適合在嚴苛環境下作為電漿子材料。故我們嘗試將過渡金屬氮化物應用在非線性光學領域,透過表面電漿子共振可產生局域強場的特性,增強二維材料的非線性光學現象。因為表面電漿子共振的局域強場集中在金屬材料表面,我們選用單層二硫化鉬(Molybdenum Disulfide, MoS2)做為非線性材料,能夠在原子層級的厚度產生極強的二次諧波產生(Second Harmonic Generation, SHG)。    在本研究中我們將比較貴金屬(金、銀)以及過渡金屬氮化物(氮化鈦、氮化鉿)作為電漿子材料應用在非線性光學的差異。首先我們選用具有偏振性的光柵設計作為共振結構,可更清楚的探討表面電漿子共振的影響,並透過時域有限差分(Finite-Difference Time-Domain, FDTD)的模擬方法設計出光柵結構,因為主要是使用摻鈦藍寶石脈衝雷射作為激發光,其波長為800奈米,我們將結構的共振波長設計於此處,實驗上我們量測其反射光譜,兩者能夠得到相近的結果。接著我們先分析本實驗中的非線性材料-單層二硫化鉬(MoS2)於的基本光學性質,再將材料乾轉印至設計好的奈米光柵共振結構上,過程中所有樣品的單層二硫化鉬與光柵方向都是對齊的,避免受到其他因素影響。接著分別探討貴金屬與過渡金屬氮化物的光柵結構所產生的影響,並對其做統計處理,最後兩者皆得到100倍上下的增強倍率。因此我們能夠利用過渡金屬氮化物,達到與貴金屬相近的效率,然而同時對於環境有更好的適應力,故相信過渡金屬氮化物在非線性光學領域也有很好的發展價值。 故在本篇論文中,我們將過渡金屬氮化物作為電漿子材料去增強單層二硫化鉬的二次諧波產生響應,探討局域強場在原子尺度下非線性的光物質交互作用,並利用其高熔點與化學穩定性克服傳統電漿子材料所面臨的問題,將過渡金屬氮化物的應用拓展至非線性光學等領域。zh_TW
dc.description.abstractTransition Metal Nitrides (TMNs) are emerging alternative plasmonic materials. TMNs can overcome the weakness of traditional plasmonic materials, such as the low melting points of gold or silver that the surface plasmon resonance might lose due to its deformation after high irradiation or at high temperature or the oxidation problem of aluminum. As plasmonic materials, TMNs are suitable for extreme environments because of these advantages, e.g., high melting point, chemical stability, and mechanical hardness. Therefore, we tried to apply TMNs in the region of nonlinear optics, enhancing the nonlinear optical phenomena via localized strong field property of surface plasmon resonance. We choose molybdenum disulfide (MoS2) as nonlinear materials because it can exhibit strong second harmonic generation (SHG) within atomic thickness. In this research, we compared the responses of noble metals, e.g., gold and silver, and TMNs, e.g., titanium nitride and hafnium nitride, applied in nonlinear optics as plasmonic materials. First, to study the effects of surface plasmon resonance clearly, we choose the grating design, which is polarization-dependent, as our resonant structure. Because we use Ti:Sapphire pulsed laser, which wavelength is at 800 nm, as the excitation light, we set the resonant wavelengths of plasmonic structures at 800 nm by the finite-difference time-domain (FDTD) method. We can get similar outcomes experimentally by measuring the reflectance of the structures. After analyzing the basic properties of the nonlinear material in this research – monolayer MoS2, we transferred it onto designed resonant grating structures. The direction of monolayer MoS2 and the grating structure are aligned during the dry transfer process to avoid unwanted effects. And then, we studied the results of the grating structures made of noble metals and TMNs statistically. Both of them can reach an enhancement factor of around 100. TMNs can achieve similar optical efficiency to noble metals while having better environmental compatibility. We believe TMNs are promising in the field of nonlinear optics. In this thesis, we enhanced the SHG of monolayer MoS2 using plasmonic TMNs and studied the nonlinear light-matter interaction via localized strong electromagnetic fields at the nanoscale. In the meantime, the high melting point and chemical stability of TMNs could overcome the problems of traditional plasmonic materials. We’ve extended the applications of TMNs to the fields of nonlinear optics.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:27:08Z (GMT). No. of bitstreams: 1
U0001-2209202206144800.pdf: 7636348 bytes, checksum: 98dadb77404b5c4d3020cbae84dc2b21 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 II 中文摘要 V ABSTRACT VI 目錄 VIII 圖目錄 XI 表目錄 XVII 一、 緒論 1 1.1 研究動機 1 1.2 表面電漿子共振(Surface Plasmon Resonance) 3 1.2.1 電漿子學(Plasmonic)的研究發展 3 1.2.2 金屬平面的表面電漿極化子(Surface Plasmon Polariton, SPP) 3 1.2.3 金屬奈米球的局域表面電漿子共振(Localized Surface Plasmon Resonance, LSPR) 8 1.3 過渡金屬氮化物(Transition Metal Nitrides, TMNs) 11 1.3.1 電漿子材料在應用上面臨的限制 11 1.3.2 過渡金屬氮化物介紹 11 1.3.3 過渡金屬氮化物的優勢 14 1.4 非線性光學 16 1.4.1 非線性光學介紹 16 1.4.2 二階非線性光學現象 16 1.4.3 二次諧波產生(Second-Harmonic Generation, SHG) 18 1.4.4 非線性材料的空間對稱性 19 1.5 過渡金屬二硫族化物(Transition Metal Dichalcogenides, TMDs) 21 1.5.1 過渡金屬二硫族化物的介紹 21 1.5.2 過渡金屬二硫族化物的晶體結構與能帶結構 22 1.5.3 過渡金屬二硫族化物的光學性質 27 1.5.4 過渡金屬二硫族化物的非線性光學性質 29 二、 樣品的製備方法及實驗量測系統 34 2.1 貴金屬的奈米光柵共振結構製備流程 34 2.1.1 物理氣相沉積-蒸鍍(Evaporation) 34 2.2 過渡金屬氮化物的奈米光柵共振結構製備流程 37 2.2.1 物理氣相沉積-磁控濺鍍(Magnetron Sputtering) 38 2.3 單層二硫化鉬(MoS2)的製備及乾轉印(Dry Transfer) 39 2.3.1 單層二硫化鉬(MoS2)的製備-金輔助剝離法(Gold-Assisted Exfoliation) 39 2.3.2 乾轉印(Dry Transfer) 40 2.4 光學實驗量測系統 42 2.4.1 二次諧波產生共軛焦掃描(Confocal Scanning)量測系統 42 2.4.2 可調控激發波長之二次諧波產生量測系統 44 2.4.3 穿透與反射光譜量測系統 46 三、 電漿子奈米共振結構的模擬與設計 47 3.1 電漿子結構設計的模擬方法-時域有限差分(Finite-Difference Time-Domain, FDTD) 47 3.2 貴金屬與過渡金屬氮化物的基本性質 48 3.3 不同電漿子材料的結構模擬預測與實驗結果 51 四、 單層二硫化鉬(MOS2)的光學性質分析 61 4.1 二氧化矽(SiO2)上的單層二硫化鉬(MoS2)光學特性 61 4.2 奈米光柵共振結構上單層二硫化鉬(MoS2)對於不同偏振的光學響應 65 4.3 不同電漿子材料之奈米光柵共振結構上單層二硫化鉬(MoS2)的光學響應 69 4.3.1 貴金屬奈米光柵共振結構上單層二硫化鉬(MoS2)之二次諧波產生 69 4.3.2 過渡金屬氮化物奈米光柵共振結構上單層二硫化鉬(MoS2)之二次諧波產生 73 4.3.3 不同奈米光柵共振結構上單層二硫化鉬(MoS2)之二次諧波產生的增強因子 77 4.3.4 奈米光柵共振結構上單層二硫化鉬(MoS2)之二次諧波產生的強度衰減現象 78 4.4 奈米光柵共振結構上單層二硫化鉬(MoS2)於不同激發波長的光學響應 79 五、 結論與未來展望 82 參考資料 83
dc.language.isozh-TW
dc.title利用過渡金屬氮化物電漿子超穎介面增強二次諧波產生zh_TW
dc.titlePlasmon-Enhanced Second-Harmonic Generation by Transition Metal Nitride Metasurfacesen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee牟中原(Chung-Yuan Mou),朱士維(Shi-Wei Chu),施閔雄(Min-Hsiung Shih),劉昌樺(Chang-Hua Liu)
dc.subject.keyword過渡金屬氮化物,貴金屬,表面電漿子共振,光柵共振結構,過渡金屬二硫族化物,二硫化鉬,非線性光學,二次諧波產生,時域有限差分,zh_TW
dc.subject.keywordtransition metal nitrides,surface plasmon resonance,plasmonic grating structures,monolayer molybdenum disulfides,nonlinear optics,second harmonic generation,finite-difference time-domain,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202203787
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
dc.date.embargo-lift2022-09-30-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-2209202206144800.pdf7.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved