Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85857
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭舒婷(Su-Ting Cheng)
dc.contributor.authorKai-Chih Yinen
dc.contributor.author殷楷智zh_TW
dc.date.accessioned2023-03-19T23:26:38Z-
dc.date.copyright2022-10-14
dc.date.issued2022
dc.date.submitted2022-09-23
dc.identifier.citation王志豪。(2005)。溪頭森林集水區地下水文特性之研究。國立臺灣大學。 殷楷智、李弘恩、鄭舒婷。(2021)。透地雷達於樹木根系探測之訊號分析及標準化。臺灣林業科學,36(3),221-233。 Alani, A., Bianchini Ciampoli, L., Tosti, F., Brancadoro, M. G., Pirrone, D., & Benedetto, A. (2017). Health monitoring of a matured tree using ground penetrating radar–investigation of the tree root system and soil interaction. Alani, A., Giannakis, I., Soldovieri, F., Benedetto, F., & Tosti, F. (2020). Novel approaches in GPR data processing for health monitoring of trees. Alani, A. M., & Lantini, L. (2020). Recent advances in tree root mapping and assessment using non-destructive testing methods: a focus on ground penetrating radar. Surveys in Geophysics, 41(3), 605-646. Annan, P. (2003). Ground penetrating radar principles, procedures and applications. Sensors and software, 278. Attia al Hagrey, S. (2007). Geophysical imaging of root-zone, trunk, and moisture heterogeneity. Journal of experimental botany, 58(4), 839-854. Barton, C. V., & Montagu, K. D. (2004). Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree physiology, 24(12), 1323-1331. Borden, K. A., Isaac, M. E., Thevathasan, N. V., Gordon, A. M., & Thomas, S. C. (2014). Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system. Agroforestry systems, 88(4), 657-669. Butnor, J. R., Doolittle, J. A., Kress, L., Cohen, S., & Johnsen, K. H. (2001). Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree physiology, 21(17), 1269-1278. Butnor, J. R., Doolittle, J. A., Johnsen, K. H., Samuelson, L., Stokes, T., & Kress, L. (2003). Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Science Society of America Journal 67: 1607–1615. Chen, Z. S., Hseu, Z. Y., & Tsai, C. C. (2015). The soils of Taiwan. Springer Netherlands. Cui, X., Quan, Z., Chen, X., Zhang, Z., Zhou, J., Liu, X., Chen, J., Cao, X., & Guo, L. (2021). GPR-based automatic identification of root zones of influence using HDBSCAN. Remote Sensing, 13(6), 1227. Dannoura, M., Hirano, Y., Igarashi, T., Ishii, M., Aono, K., Yamase, K., & Kanazawa, Y. (2008). Detection of Cryptomeria japonica roots with ground penetrating radar. Plant Biosystems, 142(2), 375-380. E. Huber and G. Hans (2018) RGPR — An open-source package to process and visualize GPR data. 17th International Conference on Ground Penetrating Radar (GPR), Switzerland, Rapperswil, 18-21 June 2018, pp. 1-4. doi: 10.1109/ICGPR.2018.8441658 Falorni, P., Capineri, L., Masotti, L., & Pinelli, G. (2004, June). 3-D radar imaging of buried utilities by features estimation of hyperbolic diffraction patterns in radar scans. In Proceedings of the Tenth International Conference on Grounds Penetrating Radar, 2004. GPR 2004. (Vol. 1, pp. 403-406). IEEE. Guo, L., Chen, J., Cui, X., Fan, B., & Lin, H. (2013a). Application of ground penetrating radar for coarse root detection and quantification: a review. Plant and soil, 362(1), 1-23. Guo, L., Lin, H., Fan, B., Cui, X., & Chen, J. (2013b). Impact of root water content on root biomass estimation using ground penetrating radar: evidence from forward simulations and field controlled experiments. Plant and soil, 371(1), 503-520. Gupta, A., Lövbrand, E., Turnhout, E., & Vijge, M. J. (2012). In pursuit of carbon accountability: the politics of REDD+ measuring, reporting and verification systems. Current Opinion in Environmental Sustainability, 4(6), 726-731. Hirano, Y., Dannoura, M., Aono, K., Igarashi, T., Ishii, M., Yamase, K., ... & Kanazawa, Y. (2009). Limiting factors in the detection of tree roots using ground-penetrating radar. Plant and Soil, 319(1), 15-24. Hruska, J., Čermák, J., & Šustek, S. (1999). Mapping tree root systems with ground-penetrating radar. Tree physiology, 19(2), 125-130. Lantini, L., Tosti, F., Giannakis, I., Zou, L., Egyir, D., Mortimer, D., & Alani, A. M. (2020, September). Health assessment of trees using GPR-derived root density maps. In 2020 IEEE Radar Conference (RadarConf20) (pp. 1-5). IEEE. Li, W., Cui, X., Guo, L., Chen, J., Chen, X., & Cao, X. (2016). Tree root automatic recognition in ground penetrating radar profiles based on randomized Hough transform. Remote Sensing, 8(5), 430. Liu, X., Chen, J., Butnor, J. R., Qin, G., Cui, X., Fan, B., Lin, H., & Guo, L. (2020). Noninvasive 2D and 3D mapping of root zone soil moisture through the detection of coarse roots with ground‐penetrating radar. Water Resources Research, 56(5), e2019WR026930. Majdi, H., Pregitzer, K., Moren, A. S., Nylund, J. E., & I Ågren, G. (2005). Measuring fine root turnover in forest ecosystems. Plant and soil, 276(1), 1-8. McQueen, D. R. (1968). Quantitative distribution of absorbing roots of Pinus silvestris and Fagus sylvatica in a forest succession. Oecologia Plantarum, 3(2), 83. Neal, A. (2004). Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-science reviews, 66(3-4), 261-330. Panagakos, G., Pessôa, T. D. S., Dessypris, N., Barfod, M. B., & Psaraftis, H. N. (2019). Monitoring the carbon footprint of dry bulk shipping in the EU: An early assessment of the MRV regulation. Sustainability, 11(18), 5133. Persson, H. Å. (1983). The distribution and productivity of fine roots in boreal forests. Plant and soil, 71(1), 87-101. Pregitzer, K. S., DeForest, J. L., Burton, A. J., Allen, M. F., Ruess, R. W., & Hendrick, R. L. (2002). Fine root architecture of nine North American trees. Ecological monographs, 72(2), 293-309. Razafindratsima, S., Sbarta, Z. M., & Demontoux, F. (2017). Permittivity easurement of wood material over a wide range of moisture content. Wood science and technology, 51(6), 1421-1431. Schmalz, B., & Lennartz, B. (2002). Analyses of soil water content variations and GPR attribute distributions. Journal of Hydrology, 267(3-4), 217-226. Song, J., & Lyu, M. R. (2005). A Hough transform based line recognition method utilizing both parameter space and image space. Pattern recognition, 38(4), 539-552. Sorgonà, A., Proto, A. R., Abenavoli, L. M., & Di Iorio, A. (2018). Spatial distribution of coarse root biomass and carbon in a high-density olive orchard: effects of mechanical harvesting methods. Trees, 32(4), 919-931. Stover, D. B., Day, F. P., Butnor, J. R., & Drake, B. G. (2007). Effect of elevated CO2 on coarse‐root biomass in Florida scrub detected by ground‐penetrating radar. Ecology, 88(5), 1328-1334. Tardío, G., González-Ollauri, A., & Mickovski, S. B. (2016). A non-invasive preferential root distribution analysis methodology from a slope stability approach. Ecological Engineering, 97, 46-57. Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water resources research, 16(3), 574-582. Tracy, S. R., Roberts, J. A., Black, C. R., McNeill, A., Davidson, R., & Mooney, S. J. (2010). The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography. Journal of experimental botany, 61(2), 311-313. Utsi, E. (2014). Target resolution using very high frequency ground penetrating radar. In Structural Faults and Repair 2014. Wang, X., Allison, R. B., Wang, L., & Ross, R. J. (2007). Acoustic tomography for decay detection in red oak trees. Research Paper FPL-RP-642. Madison, WI: US Department of Agriculture, Forest Service, Forest Products Laboratory. 7 pages., 642. Wu, Y., Guo, L., Cui, X., Chen, J., Cao, X., & Lin, H. (2014). Ground-penetrating radar-based automatic reconstruction of three-dimensional coarse root system architecture. Plant and soil, 383(1), 155-172. Zenone, T., Morelli, G., Teobaldelli, M., Fischanger, F., Matteucci, M., Sordini, M., Armani A., Ferre, C., Chiti, T., & Seufert, G. (2008). Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations. Functional Plant Biology, 35(10), 1047-1058. Zhu, S., Huang, C., Su, Y., & Sato, M. (2014). 3D ground penetrating radar to detect tree roots and estimate root biomass in the field. Remote Sensing, 6(6), 5754-5773.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85857-
dc.description.abstract樹木根系對於林木的生長與安全風險至關重要,亦為植物碳匯重要的地下碳庫。然而,位處地底之樹木根系不易調查。有別於傳統破壞性檢測,透地雷達檢測法可以避免對樹木造成不可逆的傷害。為改良透地雷達資料分析法,以利探討透地雷達訊號與根系生物量之關係,本研究透過砂坑試驗及人造林地實地探測資料,建立透地雷達訊號分析標準流程與參數設定,並分別以振幅及波型發展資料分析方法,以推估施測環境之土壤含水率與根系生物量。 本研究將資料前處理標準程序簡化為四項步驟,包括(1)以初達波位置進行地面校正;(2)以移動平均法進行軌跡平滑;(3)去除背景雜訊;(4)以常態化方式將訊號進行增益處理。接著,本研究透過霍夫轉換自動判釋雙曲線波型,建立推估體積土壤含水率之方法,研究結果顯示此方法於溪頭人造林推估平均誤差約為3.6%。研究結果亦發現,振幅閾值之篩選與土壤含水率有關。利用土壤含水率設立彈性閾值區間,以篩選後之像素數量與根系生物量進行線性迴歸分析,能有效捕捉樹木根系特徵訊號,決定係數(R2)達0.918。透過上述資料分析法之建立,透地雷達檢測法在樹木檢測、生物量推估等相關調查有其發展潛力與應用價值。zh_TW
dc.description.abstractTree root systems are critical to the stand growth and safety of trees, and are also an important part of belowground carbon storage for forest carbon sink. However, tree root systems are mostly underground making them difficult to investigate. Different from traditional destructive testing method, Ground penetrating radar (GPR) detection method can avoid irreversible damage to trees. In order to improve the analysis method of GPR data, explore the relationship between ground-penetrating radar signal and root biomass. In this study, I conducted a sandbox experiment and field detection in artificial plantation in Shuili and Xitou to develop standard operating procedures (SOPs) for GPR data analysis and parameter setting, and to improve GPR data analysis method with amplitude and wave pattern respectively for estimating the soil water content in detecting environment, and for exploring the relationship between signal and root biomass. In this study, the SOPs of data preprocessing is simplified into four steps, including (1) ground level calibration by the position of the first arrival wave; (2) smoothing each trace by moving average method; (3) background noise removal; (4) In the normalization method, the signal is subjected to gain processing. This study established a method for estimating volumetric soil moisture content (SMC) by automatically interpreting the hyperbolic wave pattern through Hough transform. The results show that the average error of this method is about 3.6% in the estimation of planted forests in Xitou. This study also found that the selection of the amplitude threshold was related to the SMC. The elastic threshold intervals were established by SMC, and linear regression analysis was performed on the number of pixels and root biomass after the amplitude threshold filtering method, which could effectively capture the characteristic signal of tree root system, and the coefficient of determination (R2) reached 0.918. Based on the data analysis method of this study, the GPR detection method has its potential in related investigations about tree detection and root biomass estimation.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:26:38Z (GMT). No. of bitstreams: 1
U0001-2209202223091400.pdf: 3192877 bytes, checksum: 7098663445e0b5aedf55d075c420d545 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents謝誌 i 摘要 iii Abstract iv 目錄 vi 圖目錄 viii 表目錄 x 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 根系調查檢測法之介紹 2 第三節 透地雷達兩大研究類型 4 第四節 透地雷達應用於臺灣林業研究之困境 9 第五節 研究目的 10 第貳章 材料與方法 12 第一節 軟硬體設備 12 第二節 試驗設計與資料蒐集 13 第三節 分析方法 16 第參章 結果 23 第一節 透地雷達訊號前處裡 23 第二節 雙曲線擬合參數設立與驗證 24 第三節 應用透地雷達推估林地之土壤含水率 27 第四節 應用雷達波振幅數值推估樹木根系生物量 29 第肆章 討論 36 第一節 影響雷達回波圖成像之物理意義 36 第二節 土壤含水率推估誤差探討 37 第三節 像素閾值篩選法無法應用於臺灣森林 38 第四節 土壤含水率對樹木根系生物量推估之影響 40 第五節 透地雷達根系生物量研究之未來展望 41 第伍章 結論 43 第陸章 參考文獻 44 附錄 50
dc.language.isozh-TW
dc.subject非破壞性檢測zh_TW
dc.subject透地雷達zh_TW
dc.subject霍夫轉換zh_TW
dc.subject土壤含水率推估zh_TW
dc.subject彈性閾值區間zh_TW
dc.subject振幅閾值篩選法zh_TW
dc.subjectamplitude threshold filtering methoden
dc.subjectestimation of soil moisture contenten
dc.subjectground penetrating radar (GPR)en
dc.subjectelastic threshold intervalsen
dc.subjectHough transformen
dc.subjectnon-destructed testing (NDT)en
dc.title改良透地雷達訊號分析法於林業科學之應用zh_TW
dc.titleImprovement of Ground Penetrating Radar Signal Analysis Methods for Applications in Forest Scienceen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王素芬(Su-Fen Wang),王建凱(Chien-Kai Wang),吳孟玲(Meing-Ling Wu)
dc.subject.keyword透地雷達,非破壞性檢測,霍夫轉換,土壤含水率推估,彈性閾值區間,振幅閾值篩選法,zh_TW
dc.subject.keywordground penetrating radar (GPR),non-destructed testing (NDT),Hough transform,estimation of soil moisture content,elastic threshold intervals,amplitude threshold filtering method,en
dc.relation.page69
dc.identifier.doi10.6342/NTU202203862
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
dc.date.embargo-lift2027-09-15-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
U0001-2209202223091400.pdf
  此日期後於網路公開 2027-09-15
3.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved