Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 臨床動物醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85847
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李雅珍(Ya-Jane Lee)
dc.contributor.authorTzu-Chien Kuoen
dc.contributor.author郭子謙zh_TW
dc.date.accessioned2023-03-19T23:26:17Z-
dc.date.copyright2022-10-19
dc.date.issued2022
dc.date.submitted2022-09-24
dc.identifier.citation1. Lambers Heerspink HJ, de Borst MH, Bakker SJ, et al. Improving the efficacy of RAAS blockade in patients with chronic kidney disease. Nat Rev Nephrol 2013;9:112-121. 2. Ruster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 2006;17:2985-2991. 3. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007;292:C82-97. 4. Romero CA, Orias M, Weir MR. Novel RAAS agonists and antagonists: clinical applications and controversies. Nat Rev Endocrinol 2015;11:242-252. 5. Kdoqi. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am J Kidney Dis 2007;49:S12-154. 6. Roudebush P, Polzin DJ, Adams LG, et al. An evidence-based review of therapies for canine chronic kidney disease. J Small Anim Pract 2010;51:244-252. 7. Roudebush P, Polzin DJ, Ross SJ, et al. Therapies for feline chronic kidney disease. What is the evidence? J Feline Med Surg 2009;11:195-210. 8. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000;87:E1-9. 9. Jia HP, Look DC, Tan P, et al. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am J Physiol Lung Cell Mol Physiol 2009;297:L84-96. 10. Simoes ESAC, Teixeira MM. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 2016;107:154-162. 11. Santos RAS, Sampaio WO, Alzamora AC, et al. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018;98:505-553. 12. Soler MJ, Wysocki J, Ye M, et al. ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. Kidney Int 2007;72:614-623. 13. Ye M, Wysocki J, William J, et al. Glomerular localization and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol 2006;17:3067-3075. 14. Burrell LM, Burchill L, Dean RG, et al. Chronic kidney disease: cardiac and renal angiotensin-converting enzyme (ACE) 2 expression in rats after subtotal nephrectomy and the effect of ACE inhibition. Exp Physiol 2012;97:477-485. 15. Dilauro M, Zimpelmann J, Robertson SJ, et al. Effect of ACE2 and angiotensin-(1-7) in a mouse model of early chronic kidney disease. Am J Physiol Renal Physiol 2010;298:F1523-1532. 16. Mitani S, Yabuki A, Sawa M, et al. Intrarenal distributions and changes of Angiotensin-converting enzyme and Angiotensin-converting enzyme 2 in feline and canine chronic kidney disease. J Vet Med Sci 2014;76:45-50. 17. Chhabra KH, Chodavarapu H, Lazartigues E. Angiotensin converting enzyme 2: a new important player in the regulation of glycemia. IUBMB Life 2013;65:731-738. 18. Lambert DW, Yarski M, Warner FJ, et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 2005;280:30113-30119. 19. Mizuiri S, Aoki T, Hemmi H, et al. Urinary angiotensin-converting enzyme 2 in patients with CKD. Nephrology (Carlton) 2011;16:567-572. 20. Wang G, Lai FM, Lai KB, et al. Urinary mRNA expression of ACE and ACE2 in human type 2 diabetic nephropathy. Diabetologia 2008;51:1062-1067. 21. Wysocki J, Goodling A, Burgaya M, et al. Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease. Am J Physiol Renal Physiol 2017;313:F487-F494. 22. Abe M, Maruyama N, Oikawa O, et al. Urinary ACE2 is associated with urinary L-FABP and albuminuria in patients with chronic kidney disease. Scand J Clin Lab Invest 2015;75:421-427. 23. Bartges JW. Chronic kidney disease in dogs and cats. Vet Clin North Am Small Anim Pract 2012;42:669-692, vi. 24. Polzin DJ. Chronic kidney disease in small animals. Vet Clin North Am Small Anim Pract 2011;41:15-30. 25. Narula AS, Hooda AK, Consensus Renal G. Conservative Management of Chronic Renal Failure. Med J Armed Forces India 2007;63:56-61. 26. O'Neill DG, Elliott J, Church DB, et al. Chronic kidney disease in dogs in UK veterinary practices: prevalence, risk factors, and survival. J Vet Intern Med 2013;27:814-821. 27. Polzin DJ. Chronic Kidney Disease. In: Nephrology and Urology of Small Animals2011:431-471. 28. Brown CA, Elliott J, Schmiedt CW, et al. Chronic Kidney Disease in Aged Cats: Clinical Features, Morphology, and Proposed Pathogeneses. Vet Pathol 2016;53:309-326. 29. Brown SA. Oxidative stress and chronic kidney disease. Vet Clin North Am Small Anim Pract 2008;38:157-166, vi. 30. Mitani S, Yabuki A, Taniguchi K, et al. Association between the intrarenal renin-angiotensin system and renal injury in chronic kidney disease of dogs and cats. J Vet Med Sci 2013;75:127-133. 31. Geddes RF, Finch NC, Syme HM, et al. The role of phosphorus in the pathophysiology of chronic kidney disease. J Vet Emerg Crit Care (San Antonio) 2013;23:122-133. 32. King LG, Giger U, Diserens D, et al. Anemia of chronic renal failure in dogs. J Vet Intern Med 1992;6:264-270. 33. Parker VJ, Freeman L. Association between body condition and survival in dogs with acquired chronic kidney disease. Journal of Veterinary Internal Medicine 2011;25:1306-1311. 34. Crowley SD, Gurley SB, Oliverio MI, et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J Clin Invest 2005;115:1092-1099. 35. Hackenthal E, Paul M, Ganten D, et al. Morphology, physiology, and molecular biology of renin secretion. Physiol Rev 1990;70:1067-1116. 36. Kobori H, Nangaku M, Navar LG, et al. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007;59:251-287. 37. Brasier AR, Li J. Mechanisms for inducible control of angiotensinogen gene transcription. Hypertension 1996;27:465-475. 38. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006;86:747-803. 39. Baylis C, Engels K, Hymel A, et al. Plasma renin activity and metabolic clearance rate of angiotensin II in the unstressed aging rat. Mech Ageing Dev 1997;97:163-172. 40. Coates D. The angiotensin converting enzyme (ACE). Int J Biochem Cell Biol 2003;35:769-773. 41. Higuchi S, Ohtsu H, Suzuki H, et al. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2007;112:417-428. 42. Ruiz-Ortega M, Ruperez M, Esteban V, et al. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant 2006;21:16-20. 43. Ferder L, Inserra F, Martínez-Maldonado M. Inflammation and the metabolic syndrome: Role of angiotensin II and oxidative stress. Current Hypertension Reports 2006;8:191-198. 44. Mezzano SA, Ruiz-Ortega M, Egido J. Angiotensin II and renal fibrosis. Hypertension 2001;38:635-638. 45. Wolf G, Butzmann U, Wenzel UO. The renin-angiotensin system and progression of renal disease: from hemodynamics to cell biology. Nephron Physiol 2003;93:P3-13. 46. Carey RM, Wang ZQ, Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension 2000;35:155-163. 47. Matsubara H, Sugaya T, Murasawa S, et al. Tissue-specific expression of human angiotensin II AT1 and AT2 receptors and cellular localization of subtype mRNAs in adult human renal cortex using in situ hybridization. Nephron 1998;80:25-34. 48. Seeliger E, Wronski T, Ladwig M, et al. The ‘body fluid pressure control system’relies on the renin–angiotensin–aldosterone system: balance studies in freely moving dogs. Clinical and experimental pharmacology and physiology 2005;32:394-399. 49. Beuschlein F. Regulation of aldosterone secretion: from physiology to disease. Eur J Endocrinol 2013;168:R85-93. 50. Gilbert KC, Brown NJ. Aldosterone and inflammation. Curr Opin Endocrinol Diabetes Obes 2010;17:199-204. 51. Iglarz M, Touyz RM, Viel EC, et al. Involvement of oxidative stress in the profibrotic action of aldosterone. Interaction wtih the renin-angiotension system. Am J Hypertens 2004;17:597-603. 52. Azibani F, Benard L, Schlossarek S, et al. Aldosterone inhibits antifibrotic factors in mouse hypertensive heart. Hypertension 2012;59:1179-1187. 53. Bolignano D, Palmer SC, Navaneethan SD, et al. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev 2014:CD007004. 54. Forrester SJ, Booz GW, Sigmund CD, et al. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018;98:1627-1738. 55. Ames MK, Atkins CE, Pitt B. The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 2019;33:363-382. 56. Leung JC, Chan LY, Tang SC, et al. Oxidative damages in tubular epithelial cells in IgA nephropathy: role of crosstalk between angiotensin II and aldosterone. J Transl Med 2011;9:169. 57. Alique M, Civantos E, Sanchez-Lopez E, et al. Integrin-linked kinase plays a key role in the regulation of angiotensin II-induced renal inflammation. Clin Sci (Lond) 2014;127:19-31. 58. Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol 2011;25:287-299. 59. Ogawa S, Kobori H, Ohashi N, et al. Angiotensin II type 1 receptor blockers reduce urinary angiotensinogen excretion and the levels of urinary markers of oxidative stress and inflammation in patients with type 2 diabetic nephropathy. Biomarker insights 2009;4:BMI. S2733. 60. Brezniceanu M-L, Liu F, Wei C-C, et al. Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in renal proximal tubular cells. Diabetes 2008;57:451-459. 61. Dai L, Watanabe M, Qureshi AR, et al. Serum 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage, is associated with mortality independent of inflammation in chronic kidney disease. Eur J Intern Med 2019;68:60-65. 62. Kamiyama M, Urushihara M, Morikawa T, et al. Oxidative stress/angiotensinogen/renin-angiotensin system axis in patients with diabetic nephropathy. Int J Mol Sci 2013;14:23045-23062. 63. Capettini LS, Montecucco F, Mach F, et al. Role of renin-angiotensin system in inflammation, immunity and aging. Curr Pharm Des 2012;18:963-970. 64. Ruiz-Ortega M, Lorenzo O, Suzuki Y, et al. Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens 2001;10:321-329. 65. Ruiz-Ortega M, Lorenzo O, Rupérez Mn, et al. Angiotensin II activates nuclear transcription factor κB through AT1 and AT2 in vascular smooth muscle cells: molecular mechanisms. Circulation research 2000;86:1266-1272. 66. Kato S, Luyckx VA, Ots M, et al. Renin-angiotensin blockade lowers MCP-1 expression in diabetic rats. Kidney Int 1999;56:1037-1048. 67. Han Y, Runge MS, Brasier AR. Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-κB transcription factors. Circulation research 1999;84:695-703. 68. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 2001;107:135-142. 69. Wolf G. Link between angiotensin II and TGF-β in the kidney. Mineral and electrolyte metabolism 1998;24:174-180. 70. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003;112:1776-1784. 71. Border WA, Noble NA. Interactions of transforming growth factor-β and angiotensin II in renal fibrosis. Hypertension 1998;31:181-188. 72. Klag MJ, Whelton PK, Randall BL, et al. Blood pressure and end-stage renal disease in men. N Engl J Med 1996;334:13-18. 73. Hsu CY, McCulloch CE, Darbinian J, et al. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med 2005;165:923-928. 74. Wehner A, Hartmann K, Hirschberger J. Associations between proteinuria, systemic hypertension and glomerular filtration rate in dogs with renal and non‐renal diseases. Veterinary Record 2008;162:141-147. 75. Fowler BL, Stefanovski D, Hess RS, et al. Effect of telmisartan, angiotensin-converting enzyme inhibition, or both, on proteinuria and blood pressure in dogs. J Vet Intern Med 2021;35:1231-1237. 76. Jafar TH, Stark PC, Schmid CH, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med 2003;139:244-252. 77. Ku E, Lee BJ, Wei J, et al. Hypertension in CKD: Core Curriculum 2019. Am J Kidney Dis 2019;74:120-131. 78. Neves MF, Cunha AR, Cunha MR, et al. The role of renin–angiotensin–aldosterone system and its new components in arterial stiffness and vascular aging. High Blood Pressure & Cardiovascular Prevention 2018;25:137-145. 79. Hall J, Granger J. Renal hemodynamic actions of angiotensin II: interaction with tubuloglomerular feedback. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1983;245:R166-R173. 80. Brinkkoetter P-T, Holtgrefe S, van der Woude FJ, et al. Angiotensin II Type 1–Receptor Mediated Changes in Heparan Sulfate Proteoglycans in Human SV40 Transformed Podocytes. Journal of the American Society of Nephrology 2004;15:33-40. 81. Sharma K, Cook A, Smith M, et al. TGF-beta impairs renal autoregulation via generation of ROS. Am J Physiol Renal Physiol 2005;288:F1069-1077. 82. Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 2011;32:1551-1565. 83. Nishiyama A, Kobori H. Independent regulation of renin-angiotensin-aldosterone system in the kidney. Clin Exp Nephrol 2018;22:1231-1239. 84. Navar LG, Nishiyama A. Intrarenal formation of angiotensin II. Contrib Nephrol 2001:1-15. 85. Nagai Y, Yao L, Kobori H, et al. Temporary angiotensin II blockade at the prediabetic stage attenuates the development of renal injury in type 2 diabetic rats. J Am Soc Nephrol 2005;16:703-711. 86. Kobori H, Ozawa Y, Suzaki Y, et al. Young Scholars Award Lecture: Intratubular angiotensinogen in hypertension and kidney diseases. Am J Hypertens 2006;19:541-550. 87. Nishiyama A, Nakagawa T, Kobori H, et al. Strict angiotensin blockade prevents the augmentation of intrarenal angiotensin II and podocyte abnormalities in type 2 diabetic rats with microalbuminuria. J Hypertens 2008;26:1849-1859. 88. Kobori H, Nishiyama A, Abe Y, et al. Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension 2003;41:592-597. 89. Mills KT, Kobori H, Hamm LL, et al. Increased urinary excretion of angiotensinogen is associated with risk of chronic kidney disease. Nephrology Dialysis Transplantation 2012;27:3176-3181. 90. Eriguchi M, Yotsueda R, Torisu K, et al. Assessment of urinary angiotensinogen as a marker of podocyte injury in proteinuric nephropathies. American Journal of Physiology-Renal Physiology 2016;310:F322-F333. 91. Mizushige T, Kobori H, Hitomi H, et al. Urinary angiotensinogen could be a prognostic marker of the renoprotection of olmesartan in metabolic syndrome patients. International journal of molecular sciences 2016;17:1800. 92. Mitani S, Yabuki A, Taniguchi K, et al. Association between the intrarenal renin-angiotensin system and renal injury in chronic kidney disease of dogs and cats. Journal of Veterinary Medical Science 2012:12-0314. 93. Lourenco BN, Coleman AE, Berghaus RD, et al. Characterization of the intrarenal renin-angiotensin system in cats with naturally occurring chronic kidney disease. J Vet Intern Med 2022;36:647-655. 94. Etelvino GM, Peluso AA, Santos RA. New components of the renin-angiotensin system: alamandine and the MAS-related G protein-coupled receptor D. Curr Hypertens Rep 2014;16:433. 95. Lautner RQ, Villela DC, Fraga-Silva RA, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res 2013;112:1104-1111. 96. Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A 2003;100:8258-8263. 97. Chappell MC, Brosnihan KB, Diz DI, et al. Identification of angiotensin-(1-7) in rat brain. Evidence for differential processing of angiotensin peptides. J Biol Chem 1989;264:16518-16523. 98. Santos RA, Ferreira AJ, Pinheiro SV, et al. Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs. Expert opinion on investigational drugs 2005;14:1019-1031. 99. Ferreira AJ, Santos RA. Cardiovascular actions of angiotensin-(1-7). Braz J Med Biol Res 2005;38:499-507. 100. Batlle D, Wysocki J, Soler MJ, et al. Angiotensin-converting enzyme 2: enhancing the degradation of angiotensin II as a potential therapy for diabetic nephropathy. Kidney Int 2012;81:520-528. 101. Ye M, Wysocki J, William J, et al. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. Journal of the American Society of Nephrology 2006;17:3067-3075. 102. Ye M, Wysocki J, Naaz P, et al. Increased ACE 2 and decreased ACE protein in renal tubules from diabetic mice: a renoprotective combination? Hypertension 2004;43:1120-1125. 103. Warner FJ, Smith AI, Hooper NM, et al. Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cell Mol Life Sci 2004;61:2704-2713. 104. Mendoza-Torres E, Oyarzún A, Mondaca-Ruff D, et al. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Therapeutic advances in cardiovascular disease 2015;9:217-237. 105. Simões e Silva AC, Flynn JT. The renin–angiotensin–aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatric nephrology 2012;27:1835-1845. 106. Simoes e Silva AC, Silveira KD, Ferreira AJ, et al. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol 2013;169:477-492. 107. Shi Y, Lo C-S, Padda R, et al. Angiotensin-(1–7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. Clinical Science 2015;128:649-663. 108. Lv LL, Liu BC. Role of non-classical renin-angiotensin system axis in renal fibrosis. Front Physiol 2015;6:117. 109. Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 2004;383:45-51. 110. Jiang F, Yang J, Zhang Y, et al. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nat Rev Cardiol 2014;11:413-426. 111. Wiese O, Zemlin AE, Pillay TS. Molecules in pathogenesis: angiotensin converting enzyme 2 (ACE2). Journal of Clinical Pathology 2021;74:285-290. 112. Devaux CA, Rolain J-M, Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. Journal of Microbiology, Immunology and Infection 2020;53:425-435. 113. Tipnis SR, Hooper NM, Hyde R, et al. A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase. Journal of Biological Chemistry 2000;275:33238-33243. 114. Luo Y, Liu C, Guan T, et al. Association of ACE2 genetic polymorphisms with hypertension-related target organ damages in south Xinjiang. Hypertension Research 2019;42:681-689. 115. Patel SK, Velkoska E, Freeman M, et al. From gene to protein—experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension. Frontiers in physiology 2014;5:227. 116. Doobay MF, Talman LS, Obr TD, et al. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2007;292:R373-R381. 117. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436:112-116. 118. Paizis G, Tikellis C, Cooper ME, et al. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut 2005;54:1790-1796. 119. Towler P, Staker B, Prasad SG, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. Journal of Biological Chemistry 2004;279:17996-18007. 120. Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci 2002;23:177-183. 121. Zhang H, Wada J, Hida K, et al. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. Journal of Biological Chemistry 2001;276:17132-17139. 122. Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. Journal of Biological Chemistry 2002;277:14838-14843. 123. Kuba K, Imai Y, Penninger JM. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases. Circ J 2013;77:301-308. 124. Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 2012;487:477-481. 125. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450-454. 126. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020;367:1444-1448. 127. Walls AC, Park Y-J, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020;181:281-292. e286. 128. Zhong J, Guo D, Chen CB, et al. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension 2011;57:314-322. 129. Liu Z, Huang XR, Chen HY, et al. Loss of angiotensin-converting enzyme 2 enhances TGF-beta/Smad-mediated renal fibrosis and NF-kappaB-driven renal inflammation in a mouse model of obstructive nephropathy. Lab Invest 2012;92:650-661. 130. Wysocki J, Ortiz-Melo DI, Mattocks NK, et al. ACE2 deficiency increases NADPH-mediated oxidative stress in the kidney. Physiol Rep 2014;2:e00264. 131. Wysocki J, Ye M, Soler MJ, et al. ACE and ACE2 activity in diabetic mice. Diabetes 2006;55:2132-2139. 132. Wong DW, Oudit GY, Reich H, et al. Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am J Pathol 2007;171:438-451. 133. Mizuiri S, Hemmi H, Arita M, et al. Expression of ACE and ACE2 in individuals with diabetic kidney disease and healthy controls. Am J Kidney Dis 2008;51:613-623. 134. Reich HN, Oudit GY, Penninger JM, et al. Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. Kidney Int 2008;74:1610-1616. 135. Velkoska E, Dean RG, Burchill L, et al. Reduction in renal ACE2 expression in subtotal nephrectomy in rats is ameliorated with ACE inhibition. Clinical science 2010;118:269-279. 136. Mizuiri S, Hemmi H, Arita M, et al. Increased ACE and decreased ACE2 expression in kidneys from patients with IgA nephropathy. Nephron Clin Pract 2011;117:c57-66. 137. Soler MJ, Wysocki J, Batlle D. ACE2 alterations in kidney disease. Nephrol Dial Transplant 2013;28:2687-2697. 138. Afkarian M, Zelnick LR, Hall YN, et al. Clinical Manifestations of Kidney Disease Among US Adults With Diabetes, 1988-2014. Jama 2016;316:602-610. 139. Leehey DJ, Singh AK, Bast JP, et al. Glomerular renin angiotensin system in streptozotocin diabetic and Zucker diabetic fatty rats. Transl Res 2008;151:208-216. 140. Chodavarapu H, Grobe N, Somineni HK, et al. Rosiglitazone treatment of type 2 diabetic db/db mice attenuates urinary albumin and angiotensin converting enzyme 2 excretion. PLoS One 2013;8:e62833. 141. Shiota A, Yamamoto K, Ohishi M, et al. Loss of ACE2 accelerates time-dependent glomerular and tubulointerstitial damage in streptozotocin-induced diabetic mice. Hypertension Research 2010;33:298-307. 142. Maksimowski N, Williams VR, Scholey JW. Kidney ACE2 expression: Implications for chronic kidney disease. PLoS One 2020;15:e0241534. 143. Wysocki J, Ye M, Khattab AM, et al. Angiotensin-converting enzyme 2 amplification limited to the circulation does not protect mice from development of diabetic nephropathy. Kidney international 2017;91:1336-1346. 144. Lew RA, Warner FJ, Hanchapola I, et al. Characterization of Angiotensin Converting Enzyme-2 (ACE2) in Human Urine. Int J Pept Res Ther 2006;12:283-289. 145. Wysocki J, Garcia-Halpin L, Ye M, et al. Regulation of urinary ACE2 in diabetic mice. Am J Physiol Renal Physiol 2013;305:F600-611. 146. Patel VB, Clarke N, Wang Z, et al. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. Journal of molecular and cellular cardiology 2014;66:167-176. 147. Reddy AB, Ramana KV, Srivastava S, et al. Aldose reductase regulates high glucose-induced ectodomain shedding of tumor necrosis factor (TNF)-α via protein kinase C-δ and TNF-α converting enzyme in vascular smooth muscle cells. Endocrinology 2009;150:63-74. 148. Melenhorst WB, Visser L, Timmer A, et al. ADAM17 upregulation in human renal disease: a role in modulating TGF-α availability? American Journal of Physiology-Renal Physiology 2009;297:F781-F790. 149. Xiao F, Hiremath S, Knoll G, et al. Increased urinary angiotensin-converting enzyme 2 in renal transplant patients with diabetes. PLoS One 2012;7:e37649. 150. Xiao F, Zimpelmann J, Agaybi S, et al. Characterization of angiotensin-converting enzyme 2 ectodomain shedding from mouse proximal tubular cells. PLoS One 2014;9:e85958. 151. Palau V, Pascual J, Soler MJ, et al. Role of ADAM17 in kidney disease. American Journal of Physiology-Renal Physiology 2019. 152. Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circulation research 2020;126:1456-1474. 153. Cherney DZ, Xiao F, Zimpelmann J, et al. Urinary ACE2 in healthy adults and patients with uncomplicated type 1 diabetes. Can J Physiol Pharmacol 2014;92:703-706. 154. Wang G, Lai FM, Lai KB, et al. Discrepancy between intrarenal messenger RNA and protein expression of ACE and ACE2 in human diabetic nephropathy. Am J Nephrol 2009;29:524-531. 155. Wysocki J, Schulze A, Batlle D. Novel Variants of Angiotensin Converting Enzyme-2 of Shorter Molecular Size to Target the Kidney Renin Angiotensin System. Biomolecules 2019;9. 156. Park SE, Kim WJ, Park SW, et al. High urinary ACE2 concentrations are associated with severity of glucose intolerance and microalbuminuria. Eur J Endocrinol 2013;168:203-210. 157. Kamijo A, Sugaya T, Hikawa A, et al. Urinary liver-type fatty acid binding protein as a useful biomarker in chronic kidney disease. Molecular and cellular biochemistry 2006;284:175-182. 158. Khatir DS, Bendtsen MD, Birn H, et al. Urine liver fatty acid binding protein and chronic kidney disease progression. Scandinavian journal of clinical and laboratory investigation 2017;77:549-554. 159. Liang Y, Deng H, Bi S, et al. Urinary angiotensin converting enzyme 2 increases in patients with type 2 diabetic mellitus. Kidney and Blood Pressure Research 2015;40:101-110. 160. Salem ES, Grobe N, Elased KM. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. American Journal of Physiology-Renal Physiology 2014;306:F629-F639. 161. Xiao F, Burns KD. Measurement of Angiotensin Converting Enzyme 2 Activity in Biological Fluid (ACE2). Methods Mol Biol 2017;1527:101-115. 162. Dales NA, Gould AE, Brown JA, et al. Substrate-based design of the first class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors. J Am Chem Soc 2002;124:11852-11853. 163. Huang L, Sexton DJ, Skogerson K, et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J Biol Chem 2003;278:15532-15540. 164. Pedersen KB, Sriramula S, Chhabra KH, et al. Species-specific inhibitor sensitivity of angiotensin-converting enzyme 2 (ACE2) and its implication for ACE2 activity assays. Am J Physiol Regul Integr Comp Physiol 2011;301:R1293-1299. 165. Ye M, Wysocki J, Gonzalez-Pacheco FR, et al. Murine recombinant angiotensin-converting enzyme 2: effect on angiotensin II-dependent hypertension and distinctive angiotensin-converting enzyme 2 inhibitor characteristics on rodent and human angiotensin-converting enzyme 2. Hypertension 2012;60:730-740. 166. Kamijo A, Sugaya T, Hikawa A, et al. Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules. Am J Pathol 2004;165:1243-1255. 167. Tuan PNH, Quyen DBQ, Van Khoa H, et al. Serum and Urine Neutrophil Gelatinase-Associated Lipocalin Levels Measured at Admission Predict Progression to Chronic Kidney Disease in Sepsis-Associated Acute Kidney Injury Patients. Disease Markers 2020;2020:8883404. 168. Zappitelli M, Washburn KK, Arikan AA, et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care 2007;11:R84. 169. Kawasaki T, Itoh K, Uezono K, et al. A simple method for estimating 24 h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. Clin Exp Pharmacol Physiol 1993;20:7-14. 170. Nordin BE. Assessment of calcium excretion from the urinary calcium/creatinine ratio. Lancet 1959;2:368-371. 171. Tang KW, Toh QC, Teo BW. Normalisation of urinary biomarkers to creatinine for clinical practice and research--when and why. Singapore Med J 2015;56:7-10. 172. Waikar SS, Sabbisetti VS, Bonventre JV. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int 2010;78:486-494. 173. Jiang X, Eales JM, Scannali D, et al. Hypertension and renin-angiotensin system blockers are not associated with expression of angiotensin-converting enzyme 2 (ACE2) in the kidney. European Heart Journal 2020;41:4580-4588. 174. Kobori H, Mori H, Masaki T, et al. Angiotensin II blockade and renal protection. Current pharmaceutical design 2013;19:3033-3042. 175. Kobori H, Nangaku M, Navar LG, et al. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacological reviews 2007;59:251-287. 176. Bartlett PC, Van Buren JW, Bartlett AD, et al. Case-control study of risk factors associated with feline and canine chronic kidney disease. Vet Med Int 2010;2010:957570. 177. Minkus G, Reusch C, Hörauf A, et al. Evaluation of renal biopsies in cats and dogs—histopathology in comparison with clinical data. Journal of Small Animal Practice 1994;35:465-472. 178. Scaglione FE, Catalano D, Bestonso R, et al. Comparison between light and electron microscopy in canine and feline renal pathology: a preliminary study. Journal of microscopy 2008;232:387-394. 179. Lees GE, Brown SA, Elliott J, et al. Assessment and management of proteinuria in dogs and cats: 2004 ACVIM Forum Consensus Statement (small animal). J Vet Intern Med 2005;19:377-385. 180. Becker GJ, Hewitson TD. The role of tubulointerstitial injury in chronic renal failure. Curr Opin Nephrol Hypertens 2000;9:133-138. 181. Eddy AA. Experimental insights into the tubulointerstitial disease accompanying primary glomerular lesions. Journal of the American Society of Nephrology 1994;5:1273-1287. 182. Sakaki Y, Urushihara M, Nagai T, et al. Urinary angiotensin converting enzyme 2 and disease activity in pediatric IgA nephropathy. The Journal of Medical Investigation 2021;68:292-296. 183. Furuhashi M, Sakai A, Tanaka M, et al. Distinct Regulation of U-ACE2 and P-ACE2 (Urinary and Plasma Angiotensin-Converting Enzyme 2) in a Japanese General Population. Hypertension 2021;78:1138-1149.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85847-
dc.description.abstract研究背景: 腎素-血管收縮素-醛固酮系統 (RAAS)的過度活化長久以來被認為是導致慢性腎病惡化的重要因子,然而隨著近年發現新的血管收縮素轉化酶2 (ACE2)和新興的RAAS成員,為此系統的認知開啟了新的觀點。根據研究文獻指出,位於細胞膜上的ACE2能將血管收縮素II (Ang II)催化為具有生物活性的血管收縮素 (1-7),其可產生拮抗Ang II所造成的負面效應而達到腎臟保護的功能。另一方面,在實驗上發現在腎臟疾病的病患或動物模型中,尿液中的ACE2會顯著地增加,其可能作為反應腎臟損傷及研究腎臟RAAS的潛在生物標記。然而其在小動物獸醫領域上目前尚未尋得相關研究。 研究目的: 本研究的目的在於評估慢性腎病的犬貓尿液中ACE2的量和活性是否會在腎病的犬貓有顯著改變以及其與相關臨床病理參數的關聯性,且在慢性腎病不同次分組中是否亦有不同,以及這些生物標記是否能作為犬貓腎臟疾病的預後指標。 研究對象: 本實驗總共在臨床上收集40隻狗和81隻貓。包含18隻健康的犬隻和22隻患有慢性腎病的犬隻以及24隻健康的貓和57隻患有慢性腎病的貓。 實驗方法: 利用商業套組酵素免疫吸附檢定和螢光檢測分別測量犬貓尿液中的ACE2濃度與活性,並將所測得之尿液ACE2濃度和活性皆進一步除以尿液中肌肝酸濃度作為校正,分別以UALCR和UAACR作為表示。 實驗結果: UALCR在無論犬或貓的慢性腎病組(犬的中位數和四分位距為5.124 [3.516-11.078] x 10-6;貓的中位數和四分位距為3.759 [2.100-5.145] x 10-6)中皆顯著高於健康控制組(犬:0.844 [0.638-1.574] x 10-6; 貓:0.894 [0.610-1.076] x 10-6)(P值皆< .001),且UALCR隨著慢性腎病的嚴重程度上升而增加;然而,相較於健康控制組,慢性腎病組的犬隻UAACR有顯著地增加(控制組: 0.346 [0.155-0.452] pmol/min/mg;慢性腎病組: 1.343 [0.725-1.772] pmol/min/mg, P值< .001)而慢性腎病組的貓其UAACR與健康控制組則無顯著差異(控制組: 1.606 [0.993-4.585] pmol/min/mg;慢性腎病組: 1.792 [0.512-3.099] pmol/min/mg, P值= .469)。 患有蛋白尿的慢性腎病犬貓,其UALCR(犬:5.998 [4.175-12.333] x 10-6; 貓:7.620 [4.563-10.674] x 10-6)和UAACR(犬:1.410 [1.016-1.792] pmol/min/mg;貓: 3.321 [1.346-8.164] pmol/min/mg)皆顯著高於無蛋白尿之慢性腎病犬貓(UALCR在犬為3.852 [2.216-4.657] x 10-6;在貓為2.992 [1.918-4.608] x 10-6/UAACR在犬為0.562 [0.259-1.357] pmol/min/mg; 在貓為1.172[0.451-2.304] pmol/min/mg),而高血壓組和無高血壓組在不論UALCR和UAACR之間都無顯著差異。 在慢性腎病貓追蹤180天內有腎臟惡化相較無腎臟惡化的貓有顯著較高的UALCR (腎臟惡化組:4.897 [4.033-9.137] x 10-6;無腎臟惡化組:2.719 [2.100-4.848] x 10-6,P值= .021),且UALCR在預測慢性腎病貓追蹤180天內有無腎臟惡化上有顯著意義AUROC (P = .021) 重要結論: 總結來說在犬貓中RAAS的改變可反應腎功能一定程度的下降,尤其是在患有蛋白尿的慢性腎病犬貓。另外在慢性腎病的貓咪中,較高的UALCR意味著腎臟疾病有較快的惡化速度。zh_TW
dc.description.abstractBackground Over-activation of the renin-angiotensin-aldosterone system (RAAS) has been recognized as an important progressive factor in renal disease for a long time. In recent decades new angiotensin-converting enzyme 2 (ACE2) and others emerging RAAS peptides were discovered, expanding our knowledge of this system. Based on research, membrane-bound ACE2 can catalyze Ang II into Ang (1-7), which has biological action against the negative effect caused by Ang II. On the other hand, the increased urinary ACE2 in humans or animal models with renal disease was found, suggesting that urinary ACE2 could reflect renal injury and be a tool for investigating intrarenal RAAS. However, study of urinary ACE2 in veterinary medicine was limited. Aim Thus, our aim of the study was: 1) to evaluate the alternation of urinary ACE2 level and activity in canine and feline CKD, and to determine uACE2 between various subgroups of CKD furthermore 2) to investigate the correlation between urinary ACE2 and clinicopathologic parameters. 3) to assess the predictive role of urinary ACE2 for renal progression Research object Totally 40 dogs and 81 cats were enrolled in this study, including 18 healthy dogs and 22 CKD dogs, and 24 healthy cats and 57 CKD cats. Methods Urinary ACE2 level and activity were measured by commercial ELISA kit and fluorometric assay kit, respectively. Urinary ACE2 level and activity were further adjusted as urinary ACE2 level-to-creatinine ratio (UALCR) and urinary ACE2 activity-to-creatinine ratio (UAACR), respectively. Results UALCR was significantly higher in canine and feline CKD groups (canine: 5.124 [3.516-11.078] x 10-6; feline: 3.759 [2.100-5.145] x 10-6) than those in the health groups (canine: 0.844 [0.638-1.574] x 10-6; feline: 0.894 [0.610-1.076] x 10-6), and both P value < .001, and it increased as renal function declined. Compared to the control group, CKD dogs had higher UAACR (control group: 0.346 [0.155-0.452] pmol/min/mg; CKD group: 1.343 [0.725-1.772] pmol/min/mg, P value< .001)) whereas CKD cats had indifferent UAACR (control group: 1.606 [0.993-4.585] pmol/min/mg; CKD group: 1.792 [0.512-3.099] pmol/min/mg, P value = .469) Canine and feline CKD complicated with proteinuria had significantly higher UALCR (canine:5.998 [4.175-12.333] x 10-6; feline:7.620 [4.563-10.674] x 10-6) and UAACR (canine:1.410 [1.016-1.792] pmol/min/mg; feline:3.321 [1.346-8.164] pmol/min/mg) than those without proteinuria (UALCR: canine:3.852 [2.216-4.657] x 10-6; feline:2.992 [1.918-4.608] x 10-6/UAACR:canine:0.562 [0.259-1.357] pmol/min/mg; feline:1.172[0.451-2.304] pmol/min/mg), and there was no statistical difference between those with and without hypertension. CKD cats with renal progression within 180 days had significantly higher UALCR than those in the non-progression group (progression group:4.897 [4.033-9.137] x 10-6; non-progression group: 2.719 [2.100-4.848] x 10-6, P = .021). Also, UALCR had a significant AUROC to predict renal progression in cats with CKD (P = .021). Conclusion RAAS status in urine was altered as the renal function declined in dogs and cats, especially in those with proteinuria. Furthermore, higher UALCR implies a faster progression in feline CKD.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:26:17Z (GMT). No. of bitstreams: 1
U0001-2209202212271000.pdf: 3539957 bytes, checksum: ec7c6726ee4b85a3509c03c6c32d2bd1 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 摘要 ii Abstract iv Content vii List of Figures x List of Tables xii List of Abbreviations xiii Chapter 1. Introduction 1 Chapter 2. Literature review 4 2.1 Chronic kidney disease (CKD) in dogs and cats 4 2.1.1 Definition and prevalence of CKD in dogs and cats 4 2.1.2 Pathogenesis of CKD in dogs and cats 4 2.1.3 Clinical practices and risk factors of CKD in veterinary medicine 4 2.2 Classical Renin-angiotensin-aldosterone system (RAAS) 5 2.2.1 Traditional pathway of RAAS 5 2.2.2 Mechanism of inflammation, oxidative stress and fibrosis in RAAS 7 2.2.3 Relationship among RAAS, hypertension and proteinuria 10 2.2.4 Importance of intrarenal RAAS in renal disease 11 2.3 Emerging RAAS cascades and angiotensin-converting enzyme 2 (ACE2) 13 2.3.1 Emerging pathway of RAAS 13 2.3.2 Characteristics of ACE2 14 2.3.3 Association between ACE2 and inflammation, oxidative stress, and fibrosis 16 2.3.4 The relationship of ACE2 with renal disease and its complication 17 2.4 Urinary angiotensin-converting enzyme 2(uACE2) 19 2.4.1 Source of urinary ACE2 and shedding mechanism for uACE2 19 2.4.2 Detection techniques for uACE2 20 2.4.3 The relation of uACE2 with CKD and other parameters 21 Chapter 3. Materials and methods 23 3.1 Patients and sample collection 23 3.1.1 Sample collection and storage 23 3.1.2 Case enrollment and exclusion criteria 23 3.1.3 Study design 26 3.2 Measurement of urinary ACE2 concentration by commercial ELISA kit 27 3.3 Measurement of urinary ACE2 activity by the commercial fluorometric assay kit 29 3.3.1 Overview 29 3.3.2 Storage condition and preparation of reagent supplied by the manufacturer 29 3.3.3 MCA-standard curve preparation 30 3.3.4 Assay procedure 30 3.3.5 Calculation 31 3.4 Statistics analysis 32 Chapter 4. Results 33 4.1 Validation of urinary ACE2 concentration and activity measurement methods 33 4.1.1 Validation of canine and feline urinary ACE2 level measurement 33 4.1.2 Validation of urinary ACE2 activity measurement 35 4.2 Statistical analysis-canine group 36 4.2.1 Patient and sample collection 36 4.2.2 Comparison of clinical characteristics, uACE2 among control and different stages of CKD 37 4.2.3 Comparison of clinical characteristics, uACE2 in CKD dogs based on proteinuria, hypertension, and renal progression 45 4.2.4 Correlation between uACE2 and other clinicopathological parameters 46 4.2.5 Receiver operating characteristic (ROC) analysis of UALCR to predict renal progression in CKD dogs 50 4.3 Statistical analysis-feline group 51 4.3.1 Patients and sample collections 51 4.3.2 Comparison of clinical characteristics, uACE2 among control and different stages of CKD 52 4.3.3 Comparison of clinical characteristics, uACE2 in CKD cats based on proteinuria, hypertension, and renal progression 60 4.3.4 Correlation between uACE2 and other clinicopathological parameters 67 4.3.5 Receiver operating characteristic (ROC) analysis of UALCR to predict feline CKD progression 72 4.3.6 Kaplan-Meier analysis of UALCR for progression of CKD 73 Chapter 5. Discussion 74 5.1 Urinary ACE2 activity in dogs and cats was not blocked by the ACE2 inhibitor supplied by the manufacturer 74 5.2 uACE2 in dogs and cats with different stages of CKD 76 5.3 uACE2 in canine and feline CKD with proteinuria, hypertension 78 5.4 Correlations of UALCR and UAACR with clinicopathology parameters 79 5.5 Predictive role of urinary ACE2 level, activity, and their ratio for renal progression in CKD dogs and cats 80 5.6 Limitation 81 5.7 Conclusion 82 Reference 83 Appendix 97
dc.language.isoen
dc.subject腎素-血管收縮素-醛固酮系統zh_TW
dc.subject貓zh_TW
dc.subject血管收縮素轉化酶2zh_TW
dc.subject尿液血管收縮素轉化酶2zh_TW
dc.subject犬zh_TW
dc.subject慢性腎病zh_TW
dc.subjectUrinary angiotensin-converting enzyme 2en
dc.subjectChronic kidney diseaseen
dc.subjectDogsen
dc.subjectCatsen
dc.subjectRenin-angiotensin-aldosterone systemen
dc.subjectAngiotensin-converting enzyme 2en
dc.title尿中血管收縮素轉化酶2及其活性與犬貓慢性腎病的關聯zh_TW
dc.titleUrinary angiotensin-converting enzyme 2 and its activity in dogs and cats with naturally occurring chronic kidney diseaseen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳允升(Vin-Cent Wu),詹東榮(Tong-Rong Jan),徐維莉(Wei-Li Hsu),蔡沛學(Pei-Shiue Tsai)
dc.subject.keyword慢性腎病,犬,貓,腎素-血管收縮素-醛固酮系統,血管收縮素轉化酶2,尿液血管收縮素轉化酶2,zh_TW
dc.subject.keywordChronic kidney disease,Dogs,Cats,Renin-angiotensin-aldosterone system,Angiotensin-converting enzyme 2,Urinary angiotensin-converting enzyme 2,en
dc.relation.page108
dc.identifier.doi10.6342/NTU202203805
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-26
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept臨床動物醫學研究所zh_TW
dc.date.embargo-lift2025-09-22-
顯示於系所單位:臨床動物醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-2209202212271000.pdf3.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved