請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85839
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 溫在弘(Tzai-Hung Wen) | |
dc.contributor.author | Yun Yueh | en |
dc.contributor.author | 岳昀 | zh_TW |
dc.date.accessioned | 2023-03-19T23:26:00Z | - |
dc.date.copyright | 2022-09-29 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-26 | |
dc.identifier.citation | Agranoff, R., & McGuire, M. (2003). Collaborative public management: New strategies for local governments. Georgetown University Press. Aguilera, A. (2008). Business travel and mobile workers. Transportation Research Part A: Policy and Practice, 42(8), 1109-1116. Akhavan, M., Ghiara, H., Mariotti, I., & Sillig, C. (2020). Logistics global network connectivity and its determinants. A European City network analysis. Journal of Transport Geography, 82, 102624. Alderson, A. S., & Beckfield, J. (2004). Power and position in the world city system. American Journal of sociology, 109(4), 811-851. Andersen, T. B., & Dalgaard, C.-J. (2011). Flows of people, flows of ideas, and the inequality of nations. Journal of Economic Growth, 16(1), 1-32. Beaverstock, J. V., & Budd, L. (2013). International business travel in a digital world economy. Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social networks, 29(4), 555-564. Bowen, J. (2000). Airline hubs in Southeast Asia: national economic development and nodal accessibility. Journal of Transport Geography, 8(1), 25-41. Brueckner, J. K. (2003). Airline traffic and urban economic development. Urban studies, 40(8), 1455-1469. Campante, F., & Yanagizawa-Drott, D. (2018). Long-range growth: economic development in the global network of air links. The Quarterly Journal of Economics, 133(3), 1395-1458. Chan, C.-H., Chu, T.-H., Wu, J.-H. P., & Wen, T.-H. (2021). Spatially Characterizing Major Airline Alliances: A Network Analysis. ISPRS International Journal of Geo-Information, 10(1), 37. Chen, T. H. Y. (2021). Statistical inference for multilayer networks in political science. Political Science Research and Methods, 9(2), 380-397. Chong, Z., & Pan, S. (2020). Understanding the structure and determinants of city network through intra-firm service relationships: The case of Guangdong-Hong Kong-Macao Greater Bay Area. Cities, 103, 102738. Coscia, M., Neffke, F. M., & Hausmann, R. (2020). Knowledge diffusion in the network of international business travel. Nature Human Behaviour, 4(10), 1011-1020. Derudder, B., Taylor, P., Ni, P., De Vos, A., Hoyler, M., Hanssens, H., Bassens, D., Huang, J., Witlox, F., & Shen, W. (2010). Pathways of change: Shifting connectivities in the world city network, 2000—08. Urban studies, 47(9), 1861- 1877. Derudder, B., & Taylor, P. J. (2021). The GaWC perspective on global-scale urban networks. In Handbook of cities and networks (pp. 601-617). Edward Elgar Publishing. Derudder, B., & Witlox, F. (2005). An appraisal of the use of airline data in assessing the world city network: a research note on data. Urban studies, 42(13), 2371- 2388. Derudder, B., Witlox, F., Faulconbridge, J., & Beaverstock, J. (2008). Airline data for global city network research: reviewing and refining existing approaches. GeoJournal, 71(1), 5-18. Derudder, B., Witlox, F., & Taylor, P. J. (2007). US cities in the world city network: Comparing their positions using global origins and destinations of airline passengers. Urban Geography, 28(1), 74-91. Docquier, F., Golenvaux, N., Nijssen, S., Schaus, P., & Stips, F. (2022). Cross-border mobility responses to COVID-19 in Europe: new evidence from facebook data. Globalization and Health, 18(1), 1-17. Fagiolo, G., & Santoni, G. (2015). Human-mobility networks, country income, and labor productivity. Network Science, 3(3), 377-407. Feiock, R. C., Steinacker, A., & Park, H. J. (2009). Institutional collective action and economic development joint ventures. Public administration review, 69(2), 256-270. Friedmann, J. (1995). The world city hypothesis. World cities in a world system, 317- 331. Friedmann, J., & Wolff, G. (1982). World city formation: an agenda for research and action. International journal of urban and regional research, 6(3), 309-344. Gereffi, G. (2018). Global value chains and development: Redefining the contours of 21st century capitalism. Cambridge University Press. Gereffi, G., & Korzeniewicz, M. (1994). Commodity chains and global capitalism. ABC-CLIO. Ghoshal, S., & Bartlett, C. A. (1990). The multinational corporation as an interorganizational network. Academy of management review, 15(4), 603-626. Goolsbee, A., & Syverson, C. (2021). Fear, lockdown, and diversion: Comparing drivers of pandemic economic decline 2020. Journal of public economics, 193, 104311. Gordon, V. (2007). Partners or competitors? Perceptions of regional economic development cooperation in Illinois. Economic Development Quarterly, 21(1), 60-78. Guo, Y., Li, B., & Han, Y. (2020). Dynamic network coupling between high-speed rail development and urban growth in emerging economies: Evidence from China. Cities, 105, 102845. Helg, R., & Tajoli, L. (2004). Patterns of international fragmentation of production and implications for the labor markets. U. of Michigan Research Seminar in International Economics Working Paper. Henderson, J. V. (2010). Cities and development. Journal of regional science, 50(1), 515-540. Hennemann, S., & Derudder, B. (2014). An alternative approach to the calculation and analysis of connectivity in the world city network. Environment and Planning B: Planning and Design, 41(3), 392-412. Hong, J., Chu, Z., & Wang, Q. (2011). Transport infrastructure and regional economic growth: evidence from China. Transportation, 38(5), 737-752. Jiao, J., Wang, J., & Jin, F. (2017). Impacts of high-speed rail lines on the city network in China. Journal of Transport Geography, 60, 257-266. Keeling, D. J. (1995). Transport and the world city paradigm. World cities in a world- system, 115-131. Khanna, P. (2016). Connectography: Mapping the future of global civilization. Random House. Krätke, S. (2014). How manufacturing industries connect cities across the world: extending research on ‘multiple globalizations’. Global networks, 14(2), 121- 147. Kulendran, N., & Wilson, K. (2000). Modelling business travel. Tourism Economics, 6(1), 47-59. Lazega, E., & Snijders, T. A. (2015). Multilevel network analysis for the social sciences: Theory, methods and applications (Vol. 12). Springer. Lee, I. W., Feiock, R. C., & Lee, Y. (2012). Competitors and cooperators: A micro‐ level analysis of regional economic development collaboration networks. Public administration review, 72(2), 253-262. Lee, Y., Lee, I. W., & Feiock, R. C. (2012). Interorganizational collaboration networks in economic development policy: An exponential random graph model analysis. Policy Studies Journal, 40(3), 547-573. Lin, S., & Song, S. (2002). Urban economic growth in China: Theory and evidence. Urban studies, 39(12), 2251-2266. Lissoni, F. (2001). Knowledge codification and the geography of innovation: the case of Brescia mechanical cluster. Research policy, 30(9), 1479-1500. Mayer, T., Méjean, I., & Nefussi, B. (2010). The location of domestic and foreign production affiliates by French multinational firms. Journal of Urban Economics, 68(2), 115-128. Meta. (2021). Facebook Data for Good. Neal, Z. (2011). Differentiating centrality and power in the world city network. Urban studies, 48(13), 2733-2748. Ng, C. P., Law, T. H., Wong, S. V., & Kulanthayan, S. (2017). Relative improvements in road mobility as compared to improvements in road accessibility and economic growth: A cross-country analysis. Transport Policy, 60, 24-33. Olberding, J. C. (2002). Does regionalism beget regionalism? The relationship between norms and regional partnerships for economic development. Public administration review, 62(4), 480-491. Pan, F., He, Z., Fang, C., Yang, B., & Liang, J. (2018). World City Networks Shaped by the Global Financing of Chinese Firms: A Study Based on Initial Public Offerings of Chinese Firms on the Hong Kong Stock Exchange, 1999-2017. Networks and Spatial Economics, 18(3), 751-772. Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p*) models for social networks. Social networks, 29(2), 173-191. Salas, E. B. (2022). Number of scheduled passengers boarded by the global airline industry from 2004 to 2022(in millions). Statista 2022. https://www.statista.com/statistics/564717/airline-industry-passenger-traffic- globally/#:~:text=Global%20air%20traffic%20%2D%20scheduled%20passen gers%202004%2D2022&text=In%202021%2C%20due%20to%20the,passeng er%20traffic%20compared%20to%202019. Sassen, S. (1991). T he global city. Nueva Jersey: Princeton UniversityPress. Sassen, S. (2013). The global city. Princeton University Press. Schneider, M., Scholz, J., Lubell, M., Mindruta, D., & Edwardsen, M. (2003). Building consensual institutions: networks and the National Estuary Program. American journal of political science, 47(1), 143-158. Shrestha, M. (2010). Do risk profiles of services alter contractual patterns? A comparison across multiple metropolitan services. Self-organizing federalism: Collaborative mechanisms to mitigate institutional collective action dilemmas, 114-141. Sigler, T. J., & Martinus, K. (2017). Extending beyond ‘world cities’ in World City Network (WCN) research: Urban positionality and economic linkages through the Australia-based corporate network. Environment and Planning A: Economy and Space, 49(12), 2916-2937. Smith, M., Gorgoni, S., & Cronin, B. (2019). International production and trade in a high-tech industry: A multilevel network analysis. Social networks, 59, 50-60. Sölvell, Ö., & Birkinshaw, J. (2000). Leading-edge multinationals and leading-edge clusters. ME Sharpe Incorporated. Storper, M., & Venables, A. J. (2004). Buzz: face-to-face contact and the urban economy. Journal of Economic Geography, 4(4), 351-370. Taylor, P. (2011). Measuring the world city network: new results and developments. In icts for mobile and ubiquitous urban infrastructures: surveillance, locative media and global networks (pp. 15-23). IGI Global. Taylor, P. J. (2001). Specification of the world city network. Geographical analysis, 33(2), 181-194. Ulusoy, Ö. (2015). Aspect coverage Aspect coverage can be defined as the percentage of topic aspects covered by the summary of reviews Bipartite networks A bipartite network is a set of network nodes divided into two disjoint sets such that no links are present between two nodes within the same set CAO An affect analysis system for emoticons created by Michal Ptaszynski. Recommendation and Search in Social Networks, 281. United Nations. (2018). The World's cities in 2018 : data booklet. United Nations. Visser, J. A. (2002). Understanding local government cooperation in urban regions: Toward a cultural model of interlocal relations. The American Review of Public Administration, 32(1), 40-65. Wang, P., Robins, G., & Matous, P. (2016). Multilevel network analysis using ERGM and its extension. In Multilevel network analysis for the social sciences (pp. 125-143). Springer. Wang, P., Robins, G., Pattison, P., & Lazega, E. (2013). Exponential random graph models for multilevel networks. Social networks, 35(1), 96-115. Zhao, M., Derudder, B., Zhang, P., & Zhong, P. (2020). An expanded bipartite network projection algorithm for measuring cities’ connections in service firm networks. Networks and Spatial Economics, 20(2), 479-498. Zhao, X., Su, J., Chao, J., Liu, X., Li, T., & Rui, Y. (2020). The character and economic preference of city network of China: A Study Based on the Chinese Global Fortune 500 Enterprises. Complexity, 2020. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85839 | - |
dc.description.abstract | 近年來,在討論全球經濟網絡議題之時城市之間的經濟互動為不可忽視的 重要因素。在過去的研究之中,諸多學者透過城市之間的旅運資料來量化 城市之間的經濟互動,例如:飛航或是鐵路。然而,多數研究僅將研究專 注在其中一種運輸模式之上,並且無法再研究資料之中捕捉「經濟」的面 相。除此之外,由於城市在議題之中扮演重要角色,多數研究忽略了其國 家在經濟網絡之中的影響力。回應以上兩個問題,本研究的研究樣區選定 美洲以及歐洲的國家以及城市。全球經濟城市網絡(World city network, WCN)被用於建立城市之間的經濟互動,而國家之間的商業人口流動則是 用於量化國家之間的連結。接著,多層指數隨機圖模型(Multi-level exponential random graph model, Multi-level ERGM)被用於解釋國家對城 市經濟互動之間的影響。從模型結果可以看到,僅有城市層級的模型以及 加入國家層級的兩個模型之間的結果顯著不同,顯示國家在網絡之中的位 置對城市之間經濟互動的形成的影響為不可忽視的,同時,模型之中的各 項結構也顯示國家層級之間的連結會影響城市層級之間的連結。本研究的 研究結論為,國家層級間的各項網絡中心性以及網絡結構,皆對城市之間 的經濟互動的形成有顯著影響。 | zh_TW |
dc.description.abstract | City economic interaction has long been a popular topic when it comes to global economic networks, especially when cities start to interact with each other individually. In past studies, scholars have been quantifying the economic interactions between cities through transportation data, such as airlines or railroads. However, the previous studies mostly constrained their study to one specific transportation method and they are not able to capture the idea of ‘economic’. In addition, while cities play the one and only important role in the past study, the power of the country to the city is also neglected. To solve the two questions, cities and countries in the Americas and Europe have been chosen as the study area. The world city network (WCN) model is used to build economic network interactions between cities and the human business mobility data is used to represent the linkage between countries. Afterward, the multi-level exponential random graph model (ERGM) is applied to the model to interpret the power of countries on cities. The results show that comparing the model with only city-level, and the model with country-level added, the two model shows a completely different result, where the positions of countries have a greater impact on the city economic interaction and the morphologies in the model also shows the significant effect of the linkages between countries to cities. In other words, the power of counties over cities is significant. This study concludes that the positionality of countries and the network structure at the country level have a significant impact on the formation of economic interaction between cities. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:26:00Z (GMT). No. of bitstreams: 1 U0001-2209202210550500.pdf: 5143997 bytes, checksum: 655a0c4e3996508fc658d8905a039e9b (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | Abstract I 摘要 III Content IV List of figures V List of tables VI Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Purpose 6 Chapter 2 Literature review 8 2.1 World City Network 8 2.2 The power of countries to cities in economy 11 2.3 Human mobility and economy 13 Chapter 3 Data and methods 16 3.1 Study area 16 3.1 Data 17 City economic network 18 Business travel network 19 3.2 Research frame work 22 3.3 Method 23 Network formation 24 Centrality measurement 25 Single-level Exponential random graph model (ERGM) 27 Multi-level ERGM 30 Chapter 4 Result 34 4.1 Descriptive analysis: centrality measurement 34 4.2 Single layer: City economic interaction ERGM 38 4.2 Multi-layer: Multi-level ERGM estimation 41 Chapter 5 Discussion 44 Chapter 6 Conclusion 48 References 49 Appendix 55 | |
dc.language.iso | en | |
dc.title | 評估跨國人口移動與全球城市經濟互動之關聯性: Multi-level ERGM 分析 | zh_TW |
dc.title | Identifying the associations between cross-country human mobility and city-level economic interaction: Multi-level ERGM analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林楨家(Jen-Jia Lin),郭佩棻(Pei-Fen Kuo) | |
dc.subject.keyword | 城市網絡,國家經濟,人口商業移動,全球經濟網絡,多層指數隨機圖模型, | zh_TW |
dc.subject.keyword | ERGM,City network,country economic,business human mobility,world city network,WCN, | en |
dc.relation.page | 55 | |
dc.identifier.doi | 10.6342/NTU202203794 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-29 | - |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2209202210550500.pdf | 5.02 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。