請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85823完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周佳靚(Chia-Ching Chou) | |
| dc.contributor.author | Cheng-Yu Yang | en |
| dc.contributor.author | 楊承諭 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:25:29Z | - |
| dc.date.copyright | 2022-04-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-03-17 | |
| dc.identifier.citation | 1. Salvetat, J.-P., et al., Mechanical properties of carbon nanotubes. Applied Physics A, 1999. 69(3): p. 255-260. 2. Huang, H., et al., Viscosity and Morphology Modification of Length Sorted Single-Walled Carbon Nanotubes in PIB Matrices. Journal of Nanomaterials, 2017. 2017: p. 1-9. 3. Treacy, M.J., T.W. Ebbesen, and J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. nature, 1996. 381(6584): p. 678-680. 4. Carvalho, E.J. and M.C. dos Santos, Role of surfactants in carbon nanotubes density gradient separation. ACS nano, 2010. 4(2): p. 765-770. 5. Prato, M., K. Kostarelos, and A. Bianco, Functionalized carbon nanotubes in drug design and discovery. Accounts of chemical research, 2008. 41(1): p. 60-68. 6. Quideau, S., et al., Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition, 2011. 50(3): p. 586-621. 7. Zhou, H., et al., Tannic Acid-A Universal Immobilization and Fixation Agent for Nanocarbon Materials: A Novel Strategy for Aqueous Fabrication of Functional Nanocarbon Coating onto Silicon-Based Substances. ACS Sustainable Chemistry & Engineering, 2019. 7(22): p. 18534-18541. 8. Ghigo, G., et al., New insights into the protogenic and spectroscopic properties of commercial tannic acid: the role of gallic acid impurities. New Journal of Chemistry, 2018. 42(10): p. 7703-7712. 9. Zhang, X., et al., Interaction of tannic acid with carbon nanotubes: enhancement of dispersibility and biocompatibility. Toxicology Research, 2015. 4(1): p. 160-168. 10. Yan, W., et al., Applications of tannic acid in membrane technologies: A review. Advances in Colloid and Interface Science, 2020. 284: p. 102267. 11. Chou, T.-W., et al., An assessment of the science and technology of carbon nanotube-based fibers and composites. Composites Science and Technology, 2010. 70(1): p. 1-19. 12. Li, S., et al., Enhancement of carbon nanotube fibres using different solvents and polymers. Composites science and technology, 2012. 72(12): p. 1402-1407. 13. Lin, D. and B. Xing, Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environmental science & technology, 2008. 42(16): p. 5917-5923. 14. Bratzel, G.H., et al., Bioinspired noncovalently crosslinked “fuzzy” carbon nanotube bundles with superior toughness and strength. Journal of Materials Chemistry, 2010. 20(46). 15. Zhang, L. and X. Wang, Tailoring pull-out properties of single-walled carbon nanotube bundles by varying binding structures through molecular dynamics simulation. Journal of chemical theory and computation, 2014. 10(8): p. 3200-3206. 16. Gao, J., et al., Selective wrapping and supramolecular structures of polyfluorene–carbon nanotube hybrids. ACS nano, 2011. 5(5): p. 3993-3999. 17. Panczyk, T., P. Wolski, and L. Lajtar, Coadsorption of Doxorubicin and Selected Dyes on Carbon Nanotubes. Theoretical Investigation of Potential Application as a pH-Controlled Drug Delivery System. Langmuir, 2016. 32(19): p. 4719-28. 18. Tang, H., et al., New Insight into the Aggregation of Graphene Oxide Using Molecular Dynamics Simulations and Extended Derjaguin-Landau-Verwey-Overbeek Theory. Environ Sci Technol, 2017. 51(17): p. 9674-9682. 19. An, X., Y. Kang, and G. Li, The interaction between chitosan and tannic acid calculated based on the density functional theory. Chemical Physics, 2019. 520: p. 100-107. 20. Hagler, A., E. Huler, and S. Lifson, Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. Journal of the American Chemical Society, 1974. 96(17): p. 5319-5327. 21. Zhang, C., et al., Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS nano, 2018. 12(12): p. 12347-12356. 22. Pramanik, C., et al., Carbon nanotube dispersion in solvents and polymer solutions: mechanisms, assembly, and preferences. ACS nano, 2017. 11(12): p. 12805-12816. 23. Polak, E. and G. Ribiere, Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 1969. 3(R1): p. 35-43. 24. Reif, F., Fundamentals of statistical and thermal physics. 2009: Waveland Press. 25. Berendsen, H.J., et al., Molecular dynamics with coupling to an external bath. The Journal of chemical physics, 1984. 81(8): p. 3684-3690. 26. Morishita, T., Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath. The Journal of Chemical Physics, 2000. 113(8): p. 2976-2982. 27. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 2017: Oxford university press. 28. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 1984. 81(1): p. 511-519. 29. Verlet, L., Computer' experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 1967. 159(1): p. 98. 30. Hockney, R.W. and J.W. Eastwood, Computer simulation using particles. 2021: crc Press. 31. Saidi, A. Decimation-in-time-frequency FFT algorithm. in Proceedings of ICASSP'94. IEEE International Conference on Acoustics, Speech and Signal Processing. 1994. IEEE. 32. Toukmaji, A. and J.A. Board, Ewald summation techniques in perspective: a survey. Computer Physics Communications, 1996. 95: p. 73-92. 33. Shire, T., K.J. Hanley, and K. Stratford, DEM simulations of polydisperse media: efficient contact detection applied to investigate the quasi-static limit. Computational Particle Mechanics, 2021. 8(4): p. 653-663. 34. Ohno, K., T. Nitta, and H. Nakai. Sph-based fluid simulation on gpu using verlet list and subdivided cell-linked list. in 2017 Fifth International Symposium on Computing and Networking (CANDAR). 2017. IEEE. 35. BIOVIA, D.S., BIOVIA, Dassault Systèmes, Material Studio, 8.0, San Diego: Dassault Systèmes. 2017. 36. Winmostar V10, X-Ability Co. Ltd, Tokyo, Japan, 2021. 37. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 1996. 14(1): p. 33-38. 38. Izrailev, S., et al., Steered molecular dynamics, in Computational molecular dynamics: challenges, methods, ideas. 1999, Springer. p. 39-65. 39. Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of computational chemistry, 2005. 26(16): p. 1781-1802. 40. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 1995. 117(1): p. 1-19. 41. Ryckaert, J.-P., G. Ciccotti, and H.J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of computational physics, 1977. 23(3): p. 327-341. 42. Berendsen, H., J. Grigera, and T. Straatsma, The missing term in effective pair potentials. Journal of Physical Chemistry, 1987. 91(24): p. 6269-6271. 43. Pakdel, M., H. Raissi, and M. Shahabi, Predicting doxorubicin drug delivery by single-walled carbon nanotube through cell membrane in the absence and presence of nicotine molecules: A molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 2020. 38(5): p. 1488-1498. 44. Dai, H., et al., Synthesis and characterization of carbide nanorods. Nature, 1995. 375(6534): p. 769-772. 45. Vilatela, J.J., J.A. Elliott, and A.H. Windle, A model for the strength of yarn-like carbon nanotube fibers. ACS nano, 2011. 5(3): p. 1921-1927. 46. Filleter, T., et al., Experimental-computational study of shear interactions within double-walled carbon nanotube bundles. Nano letters, 2012. 12(2): p. 732-742. 47. Al-Ostaz, A., et al., Molecular dynamics simulation of SWCNT–polymer nanocomposite and its constituents. Journal of Materials Science, 2008. 43(1): p. 164-173. 48. Cheng, H., et al., Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. The Journal of Physical Chemistry B, 2005. 109(9): p. 3780-3786. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85823 | - |
| dc.description.abstract | 奈米碳管為二十一世紀被眾人廣泛討論的新興材料,隨著近幾年人們對於此性質的研究與討論,其優點也隨之應用在各個領域與生活當中,然而在製造加工領域與奈米碳管分解的環保議題上,可以看到單寧酸(TA)在與奈米碳材應用上扮演著不同的角色。故本篇論文希望藉由分子動力學(Molecular Dynamics)模擬計算並觀察微觀尺度下單寧酸吸附於單壁奈米碳管上的構型與力學關係,本文採用CVFF(Consistent Valence Forcefield)勢能來表示原子之間的交互作用, 利用LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)來進行SMD(Steered Molecular Dynamics)與拔出試驗並收集原子的運動軌跡來進行機械性質與吸附構型的分析。 本文中採用去質子化 單寧酸的方式來模擬不同pH濃度的單寧酸,設計了單、多顆不同帶電量之單寧酸吸附於單壁奈米碳管、雙平行排列之碳管與單寧酸吸附於奈米碳管束總共四種模型,並量測不同帶電數的單寧酸吸附於單壁奈米碳管之構型,發現不同電子數下的單寧酸吸附於單壁奈米碳管之構型是有所差異性的,並藉由分析雙平行排列之碳管相互滑移的力學行為,發現單寧酸與單壁奈米碳管的交互作用力是優於相鄰兩裸碳管間的作用力,最後藉由單寧酸吸附於奈米碳管束之拔出試驗的力學分析與過往文獻的力學行為做比較,可以發現在鹼性環境下的單寧酸吸附於奈米碳管束時力學表現較佳。藉由本研究中分子動力模擬,可以協助了解微觀尺度下在不同pH環境中單寧酸吸附於單壁奈米碳管上的構型與力學關係。 | zh_TW |
| dc.description.abstract | Carbon nanotube is a new material is widely discussed in the twenty-first century. Recently, people have studied and discussed the properties of carbon nanotube, and its advantages have also been applied in various fields. However, in the field of manufacturing, processing, the environmental protection issues of carbon nanotube decomposition, it can be seen that tannic acid (TA) plays a different role from the application of carbon nanotube. In this thesis, we hope to simulate and observe the configuration and mechanical relationship of tannic acid adsorbed on single-walled carbon nanotubes at the micro scale by molecular dynamics. In this thesis, CVFF (Consistent Valence Forcefield) potential energy is used to represent the interaction between atoms. LAMMPS (Large-scale Atomic / Molecular Massively Parallel Simulator) was used to perform SMD (Steered Molecular Dynamics) and pull-out tests, atomic trajectories were collected to analyze mechanical properties and adsorption configurations. In this thesis, deprotonated tannic acid was used to simulate tannic acid with different pH concentrations. Four models were designed, namely, single and multiple tannic acids with different charges were adsorbed on single-walled carbon nanotubes, double parallel arranged carbon nanotubes and tannic acid adsorbed on carbon nanotubes. The configuration of tannic acid adsorbed on single-walled carbon nanotubes with different charges was measured. It was found that the configuration of tannic acid adsorbed on single-walled carbon nanotubes with different charges was different. By analyzing the mechanical behavior of double parallel arranged carbon nanotubes, it was found that the interaction force between tannic acid and single-walled carbon nanotubes was better than that between adjacent bare carbon nanotubes. Finally, by comparing the mechanical analysis of the pull-out test of tannic acid adsorbed on the carbon nanotube bundles with the mechanical behavior, it can be found that tannic acid adsorbed on the carbon nanotube bundles in alkaline environment has better mechanical performance. In this thesis, molecular dynamics simulation can help to understand the configuration and mechanical relationship of tannic acid adsorbed on single-walled carbon nanotubes at micro-scale in different pH environments. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:25:29Z (GMT). No. of bitstreams: 1 U0001-1603202214471100.pdf: 12264764 bytes, checksum: 1524d327c3e087e2cfea4193758d9faf (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiii 第1章. 緒論 1 1.1、 研究動機與目的………………………. 1 1.2、 文獻回顧 2 1.3、 論文架構 5 第2章. 研究理論與分析方法 6 2.1、 分子動力學模擬方法…………………………………………… 6 2.1.1 力場 6 2.1.2 能量最小化及共軛梯度法 9 2.1.3 系綜 10 2.1.4 韋爾萊積分法 12 2.1.5 粒子-粒子-粒子-網格(P3M)方法 14 2.1.6 週期性邊界、截斷半徑及韋爾萊表列法 15 2.1.7 分子動力學模擬流程 17 2.2、 拉伸分子動力學方法(Steered Molecular Dynamics) 18 2.3、 本研究之模擬參數設定 20 2.4、 測量與分析方法 21 2.4.1 測量單寧酸支鏈間的距離 21 2.4.2 測量單寧酸支鏈間的夾角 22 2.4.3 測量單寧酸構型吸附於單壁奈米碳管的平面角 22 2.4.4 測量單寧酸構型吸附於單壁奈米碳管之弧度 24 2.4.5 Root Mean Square Deviation(RMSD)之計算 24 第3章. 單寧酸吸附於單壁奈米碳管之模型建構 25 3.1、 單顆單寧酸吸附於奈米碳管模型建構 25 3.2、 多顆單寧酸(TA)吸附於單壁奈米碳管模型 29 3.3、 單寧酸吸附於雙平行排列碳管之摸型 31 3.4、 單寧酸吸附於奈米碳管束之模型 34 第4章. 單寧酸吸附於奈米碳管之模擬結果與討論 36 4.1、 單顆單寧酸吸附於奈米碳管模型 36 4.1.1 單顆單寧酸吸附於單壁奈米碳管穩態分析 36 4.1.2 單顆單寧酸吸附於單壁奈米碳管形態分析 36 4.1.3 單顆單寧酸吸附於單壁奈米碳管平面角分析 42 4.1.4 單顆單寧酸吸附於單壁奈米碳管支鏈間弧度分析 42 4.1.5 單顆單寧酸吸附於單壁奈米碳管支鏈間距離分析 43 4.1.6 單顆單寧酸吸附於單壁奈米碳管支鏈間夾角分析 46 4.1.7 同樣電子數相異點拔取烴基之構型比較 50 4.1.8 單顆單寧酸拔取試驗與文獻比較結果 52 4.1.9 單顆單寧酸拔取試驗 53 4.2、 多顆單寧酸吸附於奈米碳管之模型 56 4.2.1 多顆單寧酸吸附於碳管之形態分析 56 4.2.2 多顆單寧酸吸附於碳管中多顆單寧酸之構型分析 58 4.2.3 多顆單寧酸吸附於單壁奈米碳管之構型支鏈間距離分析 59 4.2.4 多顆單寧酸吸附於碳管中多顆單寧酸之構型支鏈間夾角分析 62 4.3、 雙平行排列之碳管互相滑移之模型 65 4.3.1 雙平行排列之碳管模型穩態分析: 65 4.3.2 滑移方式與滑移模擬之參數 69 4.3.3 雙平行排列之碳管相互滑移模型力學分析 70 4.4、 單寧酸吸附於奈米碳管束-拔出試驗模型 77 4.4.1 單寧酸吸附於奈米碳管束模型穩態分析: 77 4.4.2 拔出方式與拔出之模擬參數 80 4.4.3 單寧酸吸附於奈米碳管束拔出試驗之力學分析 81 4.4.4 單寧酸吸附於單壁奈米碳管束之拔出力文獻結果比較 90 第5章. 結論與未來展望 92 5.1、 結論 92 5.2、 未來展望 93 參考文獻 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 分子動力學 | zh_TW |
| dc.subject | 單寧酸 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | 吸附 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | molecular dynamics simulation | en |
| dc.subject | Single-walled carbon nanotube | en |
| dc.subject | tannic acid | en |
| dc.subject | mechanical properties | en |
| dc.subject | adsorption | en |
| dc.title | 利用分子動力學模擬探討單寧酸吸附於單壁奈米碳管之分子結構與機械性質之研究 | zh_TW |
| dc.title | The Molecular Structure and Mechanical Properties of The Adsorption of Tannic Acid on the Single-walled Carbon Nanotube Using Molecular Dynamics Simulations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳志鴻(Chih-Hung Chen),黃仲偉(Chung-Wei Huang) | |
| dc.subject.keyword | 奈米碳管,單寧酸,機械性質,吸附,分子動力學, | zh_TW |
| dc.subject.keyword | Single-walled carbon nanotube,tannic acid,mechanical properties,adsorption,molecular dynamics simulation, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU202200635 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-03-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-04-26 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1603202214471100.pdf | 11.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
