Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85815
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林裕彬(Yu-Pin Lin)
dc.contributor.authorZhong-An Wangen
dc.contributor.author汪中安zh_TW
dc.date.accessioned2023-03-19T23:25:14Z-
dc.date.copyright2022-04-26
dc.date.issued2022
dc.date.submitted2022-03-22
dc.identifier.citationAlexander, P., Prestele, R., Verburg, P. H., Arneth, A., Baranzelli, C., Batista e Silva, F., ... & Rounsevell, M. D. (2017). Assessing uncertainties in land cover projections. Global change biology, 23(2), 767-781. Arya, P. S. (2001). Introduction to micrometeorology. Elsevier. Argüeso, D., Evans, J. P., Fita, L., & Bormann, K. J. (2014). Temperature response to future urbanization and climate change. Climate dynamics, 42(7-8), 2183-2199. Assessment, M. E. (2005). Ecosystems and human well-being (Vol. 5, p. 563). United States of America: Island press. Aubrecht, C., & Özceylan, D. (2013). Identification of heat risk patterns in the US National Capital Region by integrating heat stress and related vulnerability. Environment international, 56, 65-77. Blasone, R. S., Madsen, H., & Rosbjerg, D. (2008). Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. Journal of Hydrology, 353(1-2), 18-32. Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological economics, 29(2), 293-301. Bosch, M., Locatelli, M., Hamel, P., Remme, R. P., Chenal, J., & Joost, S. (2021). A spatially explicit approach to simulate urban heat mitigation with InVEST (v3. 8.0). Geoscientific Model Development, 14(6), 3521-3537. Briassoulis, H. (2019). Analysis of land use change: theoretical and modeling approaches. Burkhard, B., Kroll, F., Nedkov, S., & Müller, F. (2012). Mapping ecosystem service supply, demand and budgets. Ecological indicators, 21, 17-29. Cao, M., Zhu, Y., Quan, J., Zhou, S., Lü, G., Chen, M., & Huang, M. (2019). Spatial sequential modeling and predication of global land use and land cover changes by integrating a global change assessment model and cellular automata. Earth's Future, 7(9), 1102-1116. Carter, J. G., Cavan, G., Connelly, A., Guy, S., Handley, J., & Kazmierczak, A. (2015). Climate change and the city: Building capacity for urban adaptation. Progress in planning, 95, 1-66. Chen, F., Yang, X., & Zhu, W. (2014). WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmospheric research, 138, 364-377. Coseo, P., & Larsen, L. (2014). How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landscape and Urban Planning, 125, 117-129. Daily, G. C., & Matson, P. A. (2008). Ecosystem services: From theory to implementation. Proceedings of the national academy of sciences, 105(28), 9455-9456. Darmanto, N. S., Varquez, A. C. G., Kawano, N., & Kanda, M. (2019). Future urban climate projection in a tropical megacity based on global climate change and local urbanization scenarios. Urban Climate, 29, 100482. De Ridder, K., Lauwaet, D., & Maiheu, B. (2015). UrbClim–A fast urban boundary layer climate model. Urban Climate, 12, 21-48. Deilami, K., Kamruzzaman, M., & Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International journal of applied earth observation and geoinformation, 67, 30-42. Derkzen, M. L., van Teeffelen, A. J., & Verburg, P. H. (2015). Quantifying urban ecosystem services based on high‐resolution data of urban green space: an assessment for Rotterdam, the Netherlands. Journal of Applied Ecology, 52(4), 1020-1032. Doan, V. Q., Kusaka, H., & Nguyen, T. M. (2019). Roles of past, present, and future land use and anthropogenic heat release changes on urban heat island effects in Hanoi, Vietnam: Numerical experiments with a regional climate model. Sustainable Cities and Society, 47, 101479. Du, H., Song, X., Jiang, H., Kan, Z., Wang, Z., & Cai, Y. (2016). Research on the cooling island effects of water body: A case study of Shanghai, China. Ecological indicators, 67, 31-38. Eastman, J. R., Jiang, H., & Toledano, J. (1998). Multi-criteria and multi-objective decision making for land allocation using GIS. In Multicriteria analysis for land-use management (pp. 227-251). Springer, Dordrecht. Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874. Haase, D., Larondelle, N., Andersson, E., Artmann, M., Borgström, S., Breuste, J., ... & Elmqvist, T. (2014). A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio, 43(4), 413-433. Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalán, C. (2006). Climate change and human health: impacts, vulnerability and public health. Public health, 120(7), 585-596. Houet, T., Marchadier, C., Bretagne, G., Moine, M. P., Aguejdad, R., Viguie, V., ... & Masson, V. (2016). Combining narratives and modelling approaches to simulate fine scale and long-term urban growth scenarios for climate adaptation. Environmental Modelling & Software, 86, 1-13. Huang, K., Li, X., Liu, X., & Seto, K. C. (2019). Projecting global urban land expansion and heat island intensification through 2050. Environmental Research Letters, 14(11), 114037. Hwang, R. L., Lin, C. Y., & Huang, K. T. (2017). Spatial and temporal analysis of urban heat island and global warming on residential thermal comfort and cooling energy in Taiwan. Energy and Buildings, 152, 804-812. Giannaros, C., Nenes, A., Giannaros, T. M., Kourtidis, K., & Melas, D. (2018). A comprehensive approach for the simulation of the Urban Heat Island effect with the WRF/SLUCM modeling system: The case of Athens (Greece). Atmospheric Research, 201, 86-101. Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: the role of the green infrastructure. Built environment, 33(1), 115-133. Guan, D., Zhao, Z., & Tan, J. (2019). Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models: a case study in three gorges reservoir area of Chongqing, China. Environmental Science and Pollution Research, 26(20), 20669-20688. Gunawardena, K. R., Wells, M. J., & Kershaw, T. (2017). Utilising green and bluespace to mitigate urban heat island intensity. Science of the Total Environment, 584, 1040-1055. IPCC. (2014). Climate Change 2014 Synthesis Report. Contribution of working groups I. II and III to the fifth assessment report of the intergovernmental panel on climate change, 151(10.1017). Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939), 528-531. Karl, T. R., & Trenberth, K. E. (2003). Modern global climate change. science, 302(5651), 1719-1723. Koomen, E., & Stillwell, J. (2007). Modelling land-use change. In Modelling land-use change (pp. 1-22). Springer, Dordrecht. Landis JR Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977; 33: 159-174 Lauwaet, D., De Ridder, K., Saeed, S., Brisson, E., Chatterjee, F., Van Lipzig, N. P. M., ... & Hooyberghs, H. (2016). Assessing the current and future urban heat island of Brussels. Urban Climate, 15, 1-15. Lemonsu, A., Viguie, V., Daniel, M., & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586-605. Lewis, S. C., & Karoly, D. J. (2013). Evaluation of historical diurnal temperature range trends in CMIP5 models. Journal of Climate, 26(22), 9077-9089. Li, X., Li, W., Middel, A., Harlan, S. L., Brazel, A. J., & Turner Ii, B. L. (2016). Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sensing of Environment, 174, 233-243. Li, X., Zhou, Y., Asrar, G. R., Imhoff, M., & Li, X. (2017). The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Science of the Total Environment, 605, 426-435. Liang, S., Kustas, W., Schaepman-Strub, G., & Li, X. (2010). Impacts of climate change and land use changes on land surface radiation and energy budgets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3), 219-224. Lin, C. Y., Su, C. J., Kusaka, H., Akimoto, Y., Sheng, Y. F., Huang, J. C., & Hsu, H. H. (2016). Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan. Atmospheric chemistry and physics, 16(3), 1809-1822 Lin, C. Y., Tung, C. P. (2016). Procedure for Selecting GCM Datasets for Climate Risk Assessment. Terrestrial, Atmospheric and Oceanic Sciences. Lin, Y. P., Chu, H. J., Wu, C. F., & Verburg, P. H. (2011). Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling–a case study. International Journal of Geographical Information Science, 25(1), 65-87. Long, JS., (1997) Regression models for categorical and limited dependent variables vol 7. Sage MA. (2005). Millennium Ecosystem Assessment synthesis report. Island, Washington, DC. Mills, G., Cleugh, H., Emmanuel, R., Endlicher, W., Erell, E., McGranahan, G., ... & Steemer, K. (2010). Climate information for improved planning and management of mega cities (needs perspective). Procedia Environmental Sciences, 1, 228-246. Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study urban heat island–abilities and limitations. Building and environment, 45(10), 2192-2201. Mirzaei, P. A. (2015). Recent challenges in modeling of urban heat island. Sustainable cities and society, 19, 200-206. Mustafa, A., Rienow, A., Saadi, I., Cools, M., & Teller, J. (2018). Comparing support vector machines with logistic regression for calibrating cellular automata land use change models. European Journal of Remote Sensing, 51(1), 391-401. Niya, A. K., Huang, J., Kazemzadeh-Zow, A., Karimi, H., Keshtkar, H., & Naimi, B. (2020). Comparison of three hybrid models to simulate land use changes: a case study in Qeshm Island, Iran. Environmental monitoring and assessment, 192(5), 1-19. Park, C. Y., Lee, D. K., Asawa, T., Murakami, A., Kim, H. G., Lee, M. K., & Lee, H. S. (2019). Influence of urban form on the cooling effect of a small urban river. Landscape and urban planning, 183, 26-35. Pickering, N. B., Stedinger, J. R., & Haith, D. A. (1988). Weather input for nonpoint-source pollution models. Journal of irrigation and drainage engineering, 114(4), 674-690. Pontius Jr, R. G., & Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, ecosystems & environment, 85(1-3), 239-248. Overmars, K. P., & Verburg, P. H. (2007). Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model. Land use policy, 24(3), 584-599. Ren, C., Spit, T., Lenzholzer, S., Yim, H. L. S., Heusinkveld, B., van Hove, B., ... & Katzschner, L. (2012). Urban climate map system for Dutch spatial planning. International Journal of Applied Earth Observation and Geoinformation, 18, 207-221. Roberge, F., & Sushama, L. (2018). Urban heat island in current and future climates for the island of Montreal. Sustainable cities and society, 40, 501-512. Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W. (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3-4), 938-943. Santamouris, M. (2014). On the energy impact of urban heat island and global warming on buildings. Energy and Buildings, 82, 100-113. Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and urban planning, 96(2), 108-122. Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Araújo, M. B., Arnell, N. W., ... & Zierl, B. (2005). Ecosystem service supply and vulnerability to global change in Europe. science, 310(5752), 1333-1337. Schwartz, J. (2005). Who is sensitive to extremes of temperature? A case-only analysis. Epidemiology, 67-72. Shih, W. Y., Ahmad, S., Chen, Y. C., Lin, T. P., & Mabon, L. (2020). Spatial relationship between land development pattern and intra-urban thermal variations in Taipei. Sustainable Cities and Society, 62, 102415. Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900002E Swetnam, R. D., Fisher, B., Mbilinyi, B. P., Munishi, P. K., Willcock, S., Ricketts, T., ... & Lewis, S. L. (2011). Mapping socio-economic scenarios of land cover change: A GIS method to enable ecosystem service modelling. Journal of environmental management, 92(3), 563-574. Syrbe, R. U., & Walz, U. (2012). Spatial indicators for the assessment of ecosystem services: providing, benefiting and connecting areas and landscape metrics. Ecological indicators, 21, 80-88. Torrens, P. M., & O'Sullivan, D. (2000, August). Cities, cells, and complexity: developing a research agenda for urban geocomputation. In 5th international conference on GeoComputation, University of Greenwich, UK. Taha, H. (1997). Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and buildings, 25(2), 99-103. Tan, X., Sun, X., Huang, C., Yuan, Y., & Hou, D. (2021). Comparison of cooling effect between green space and water body. Sustainable Cities and Society, 67, 102711. Tung , C. P.(1995). The impact of Land Use and Climate Changes on Streamflows and Corn Grain Yields and the Effect of Corn production Response Strategies. (PHD Thesis). Cornell University, New York. Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental management, 30(3), 391-405. Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004). Land use change modelling: current practice and research priorities. GeoJournal, 61(4), 309-324. Vliet, J., Bregt, A. K., & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecological modelling, 222(8), 1367-1375. Wang, H., Stephenson, S. R., & Qu, S. (2019). Modeling spatially non-stationary land use/cover change in the lower Connecticut River Basin by combining geographically weighted logistic regression and the CA-Markov model. International Journal of Geographical Information Science, 33(7), 1313-1334. Wang, H., He, S., Liu, X., Dai, L., Pan, P., Hong, S., & Zhang, W. (2013). Simulating urban expansion using a cloud-based cellular automata model: A case study of Jiangxia, Wuhan, China. Landscape and urban planning, 110, 99-112. Wang, J., Huang, B., Fu, D., Atkinson, P. M., & Zhang, X. (2016). Response of urban heat island to future urban expansion over the Beijing–Tianjin–Hebei metropolitan area. Applied Geography, 70, 26-36 White, R., & Engelen, G. (1997). Cellular automata as the basis of integrated dynamic regional modelling. Environment and Planning B: Planning and design, 24(2), 235-246. Wilby, R. L. (2007). A review of climate change impacts on the built environment. Built environment, 33(1), 31-45. Xu, T., Gao, J., & Coco, G. (2019). Simulation of urban expansion via integrating artificial neural network with Markov chain–cellular automata. International Journal of Geographical Information Science, 33(10), 1960-1983. Yao, L., Li, T., Xu, M., & Xu, Y. (2020). How the landscape features of urban green space impact seasonal land surface temperatures at a city-block-scale: An urban heat island study in Beijing, China. Urban Forestry & Urban Greening, 52, 126704. Yu, Z., Guo, X., Zeng, Y., Koga, M., & Vejre, H. (2018). Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban forestry & urban greening, 29, 113-121. Zawadzka, J. E., Harris, J. A., & Corstanje, R. (2021). Assessment of heat mitigation capacity of urban greenspaces with the use of InVEST urban cooling model, verified with day-time land surface temperature data. Landscape and Urban Planning, 214, 104163. Zhou, L., Dang, X., Sun, Q., & Wang, S. (2020). Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustainable Cities and Society, 55,02045. Zhou, S., Wang, K., Yang, S., Li, W., Zhang, Y., Zhang, B., ... & Cui, Y. (2020). Warming Effort and Energy Budget Difference of Various Human Land Use Intensity: Case Study of Beijing, China. Land, 9(9), 280. 吳宜郡 (2020) 都市公園綠地微氣候調節服務之能力與流動。 林巧婷 (2015) 都市公園空間分布型態對降溫效益影響之研究。 陳時仲 (2015) 隨機森林模型效力評估。 莊喻淳 (2019) 運用馬可夫鍊細胞自動機模型模擬土地利用變遷—以鳳山溪流域為例。 童裕翔、陳正達、劉俊志、陳永明 (2018) 統計降尺度(日)資料評估與應用。 黃英明 (2008) 桃園地區蒸發散量之研究。 談珮華、曾雅琪(2014)臺灣局部地區溫度分布的影響因子,地理學報 (73), 1-27。 戴俐卉、洪景山、莊秉潔、蔡徵霖、倪佩貞 (2008). WRF 模式台灣地區土地利用類型之更新與個案研究. 大氣科學, 36(1), 43-61. 顧嘉安 (2010) 以馬可夫鍊細胞自動機模型模擬極端洪水對都市土地利用型態之影響─以台北市為例
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85815-
dc.description.abstract都市熱島效應描述因都市發展與擴張改變地表的生物物理特性,使得區域內溫度高於周圍的鄉村環境,此現象常見於全世界各氣候區的城市中。都市高溫會增加室內空調耗能,對於人員的勞動力、居民的環境舒適程度也有負面影響。在氣候變遷與都市持續擴張的情況下,都市熱環境將變得更加嚴峻,為訂定相關調適策略,必須了解未來情境下都市熱島效應的變化。過去都市熱島研究透過環境監測數據與不同的統計方法驗證,眾多結果顯示環境生物物理因子與空氣溫度之間的相關性,建立關係式並推估都市溫度分布。然而不同的研究受限於研究尺度、資料特性等因素,國內較少研究以都市尺度同時考量都市擴張與氣候變遷影響。因此本研究以台灣發展中城市—桃園市區為研究範例,討論夏季都市熱島於氣候與土地變遷情境下的變化與空間分布。 本研究以CA-Markov (Cellular automata-Markov)土地利用模型與隨機氣象產生器分別產生未來土地與氣候情境,並藉由InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) 的Urban Cooling模組中計算上述情境下都市熱島的空間分布。Urban Cooling模型依據土地利用之生物物理特性推估研究區空氣溫度分布,白天考量地表的蒸發散、反照率以及遮蔭程度,夜間則是考量建築密度的影響。其中,CA-Markov的土地情境設定,耦合馬爾克夫條件機率、二元羅吉斯迴歸以及隨機森林製作適宜性地圖。最終,以兩種2035土地利用情境結合3種代表濃度途徑情境(Representative Concentration Pathway)與7種大氣環流模式(General Circulation Model),其中因ACCESS1-3與CMCC-CM模式沒有RCP 2.6之資料,故以38種組合模擬未來溫度空間分布。 CA-Markov土地利用模型2014年驗證結果顯示:模擬結果與真實情境相比,各土地分布較為聚集。三種適宜性地圖中,二元羅吉斯迴歸方法較不適用於桃園研究區及研究尺度,因其土地分配結果導致真實土地中分布隨機的建地消失,因此本研究後續以條件機率與隨機森林適宜性地圖模擬未來土地情境。2035年土地情境結果中,建地之需求量於將由2014年的27790公頃增加為33082公頃,並且以鄰近都市的區域向外擴張。本研究以2014年與2015年夏季平均溫度資料進行Urban Cooling的參數檢定驗證,比較都市空氣溫度分布模擬結果與真實測站資料,可知對於都市範圍高解析度的氣溫模擬具有足夠的可信度。未來氣候情境結果顯示無論晝夜的都市溫度、鄉村溫度與城鄉溫差皆有上升之情形,在都市區域增溫幅度較鄉村地區高。於2035之未來土地變遷與氣候情境下,研究區日夜溫度至少增加約1.2℃,土地利用將影響溫度空間分布。針對氣候變遷最極端之情境,RCP8.5的ACCESS1-3模擬結果午後兩點鄉村增溫2.56℃,而都市增溫幅度可能高達3.43℃;RCP4.5的CMCC-CM模擬顯示夜間十點鄉村與都市將分別增溫2.36℃與2.8℃。 本研究為國內首篇以Urban Cooling 模式討論都市熱島之研究,在結合土地利用、都市氣溫與氣候變遷模擬之架構下,Urban Cooling 模式能有效計算未來土地與氣候情境的都市溫度分布,且能作為有效比較不同情境差異的工具。本研究結果顯示未來情境對於都市熱島的影響中,氣候情境影響研究區整體的增溫幅度,而土地變遷情境則會改變都市溫度空間分布。後續研究能參考研究架構,作為都市能源計算與熱風險區域規劃所需的基本資訊。唯不同研究區需重新調整Urban Cooling模式參數方能應用,或是替換其他適合其研究區域與尺度的模擬工具。zh_TW
dc.description.abstractUrban heat island (UHI) is one of the common environmental problems in an urban area, which describes temperature in an urban area is higher than its surroundings. The warmer environment in a high-density city could raise the energy consumption of air conditioning, lower workers' efficiency and outdoor conform. Under the circumstance of climate change and urbanization, UHI may deteriorate in the near future. Studying how UHI would change with land use and climate change is essential for the mitigation plans. This study aimed to study future urban heat island in Taoyuan City, which is one of the developing cities in Taiwan, urder climate and land-use change scenarios. In the study, Cellular automata-Markov (CA-Markov) land change model and stochastic weather generator were used to generate future urban land use and climate scenarios. Then, the diurnal spatial distribution of urban temperature would calculate by the Urban Cooling module of InVEST model, which estimates the land uses’ cooling capacity based on biophysical factors. For land-use modeling, CA-Markov model coupled with three suitability maps, made by Markov conditional probability, binary logistic regression and random forest. Future land use and climate scenarios, including two land-use maps, seven general circulation models and three representative concentration pathways, were considered to estimate future urban temperature. Urban Cooling module and CA-Markov model were validated by data in 2014. The results of CA-Markov simulations showed that binary logistic regression is not suitable for suitability map for the research scale and Taoyuan area, due to its land-use allocation neglects the randomness of the built-up area near the farmland, which is a common rural landscape in Taiwan. Therefore, future land uses of 2035 are carried out with the method of conditional probability and random forest. A suitable combination of parameters for Urban Cooling was selected to calculate the urban temperatures, which its RMSE of urban summer day and night temperature were within 0.652℃ and 0.572℃, has proved that the model is reliable to estimate high resolution temperature for the cities scale. Results of future climate scenarios have shown that urban temperatures, rural temperatures, and urban heat island intensities would all increase in 2035. The rise of temperature during the day is higher than at night, and the increase in an urban area is higher than it’s in rural. The simulations show that future temperatures in the Taoyuan area will increase at least 1.2℃. The result of RCP 8.5 and ACCESS1-3, which is the most severe condition of daytime, the increases in rural and urban areas may reach up to 2.56℃ and 3.43℃. In the nocturnal scenario of RCP4.5 and CMCC-CM, the temperature may increase by 2.36℃ in rural, and 2.8℃ in urban central. The study had shown that, with the framework of land use, urban temperature and climate change simulation, the Urban Cooling model can not only provide the efficient and reliable calculation of temperature distribution under future scenarios, but also be a useful tool to analyze the difference between scenarios. The future scenarios of urban heat island reveal that climate change affects the temperature increase of the study area, and the change land-use would influence the spatial distribution of temperature. The framework can be the foundation of energy consumption projection or analysis of the high-risk area in the city for future study, any suitable stimulation module or scenario substitute to provide a more accurate result for the different study areas.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:25:14Z (GMT). No. of bitstreams: 1
U0001-1703202214500300.pdf: 9422703 bytes, checksum: 266909554aa4b5d9e40510850dfde512 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents謝辭 I 摘要 II Abstract IV 目錄 VI 圖目錄 IX 表目錄 XII 第一章、前言 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究架構與流程 3 第二章、文獻回顧 5 2.1 土地利用變遷 5 2.2 氣候變遷與未來氣候情境 8 2.3 都市與氣候環境 10 2.4 都市生態系統服務 14 第三章、研究方法 17 3.1 研究區簡介 17 3.2 土地利用變遷模擬 19 3.2.1 CA-Markov模式原理 19 3.2.2 模式架構 20 3.2.2 土地利用驅動因子與適宜性地圖 22 3.2.3 土地利用模式驗證 25 3.3 都市生態系統服務模擬 27 3.3.1 都市降溫模式 27 3.3.2 模式參數檢定驗證 29 3.4 未來氣候情境 30 3.4.1 氣象產生器 30 3.4.2 未來氣候情境組合與假設 31 第四章、結果與討論 34 4.1 土地利用變遷 34 4.1.1 歷史土地利用資料 34 4.1.2 馬爾克夫轉移矩陣 36 4.1.3 適宜性地圖 38 4.1.4 CA-Markov驗證結果 43 4.1.5 CA-Markov誤差討論 48 4.1.6 2035年土地利用情境 51 4.1.7 小結 54 4.2 都市降溫模式 55 4.2.1 桃園參考測站 55 4.2.2 Urban Cooling模式參數設定 56 4.2.3 日間參數敏感度分析 61 4.2.4 夜間參數敏感度分析 63 4.2.5 Urban Cooling 2014年模擬結果 65 4.2.6 Urban Cooling模式結果討論 66 4.2.7 小結 74 4.3 未來情境模擬 75 4.3.1 未來氣象資料 75 4.3.2 未來日間情境空氣溫度分布 80 4.3.3 未來夜間情境空氣溫度分布 81 4.3.4 土地利用對於都市熱島分布影響 82 4.3.5 未來都市溫度變化 85 4.3.6 未來情境模擬結果討論 88 4.3.7 未來土地規劃 90 4.3.8 小結 90 第五章、結論與建議 92 5.1 結論 92 5.2 建議 93 參考文獻 94 附錄 105
dc.language.isozh-TW
dc.subject未來氣候情境zh_TW
dc.subject都市熱島效應zh_TW
dc.subjectInVEST模式zh_TW
dc.subjectCA-Markov模式zh_TW
dc.subject都市生態系統服務zh_TW
dc.subjectFuture climate scenarioen
dc.subjectUrban Ecosystem Serviceen
dc.subjectUrban heat islanden
dc.subjectInVEST modelen
dc.subjectCA-Markov modelen
dc.title氣候與土地利用變遷情境下的都市熱島效應—以桃園市區為例zh_TW
dc.titleUrban heat island under climate and land use changes: A case study of Taoyuan Cityen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-6799-3540
dc.contributor.oralexamcommittee黃國倉(Kuo-Tsang Huang),羅敏輝(Min-Hui Lo),莊振義(Jehn-Yih Juang),吳振發(Chen-Fa Wu)
dc.subject.keyword都市生態系統服務,都市熱島效應,InVEST模式,CA-Markov模式,未來氣候情境,zh_TW
dc.subject.keywordUrban Ecosystem Service,Urban heat island,InVEST model,CA-Markov model,Future climate scenario,en
dc.relation.page115
dc.identifier.doi10.6342/NTU202200639
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-03-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
dc.date.embargo-lift2022-04-26-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-1703202214500300.pdf9.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved