請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85778
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙聖德 | |
dc.contributor.author | Jia-An Chen | en |
dc.contributor.author | 陳家安 | zh_TW |
dc.date.accessioned | 2023-03-19T23:24:05Z | - |
dc.date.copyright | 2022-07-06 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-04-28 | |
dc.identifier.citation | Ferguson, L.R. and W.A. Denny, Genotoxicity of non-covalent interactions: DNA intercalators. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2007. 623(1-2): p. 14-23. Politzer, P., J.S. Murray, and Z. Peralta‐Inga, Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. International Journal of Quantum Chemistry, 2001. 85(6): p. 676-684. Chang, Y.-M., Y.-S. Wang, and S.D. Chao, A minimum quantum chemistry CCSD (T)/CBS dataset of dimeric interaction energies for small organic functional groups. The Journal of Chemical Physics, 2020. 153(15): p. 154301. Rezác, J., K.E. Riley, and P. Hobza, Extensions of the S66 data set: more accurate interaction energies and angular-displaced nonequilibrium geometries. Journal of Chemical Theory and Computation, 2011. 7(11): p. 3466-3470. Řezáč, J., Non-covalent interactions atlas benchmark data sets: Hydrogen bonding. Journal of chemical theory and computation, 2020. 16(4): p. 2355-2368. Donchev, A.G., et al., Quantum chemical benchmark databases of gold-standard dimer interaction energies. Scientific data, 2021. 8(1): p. 1-9. Glick, Z.L., et al., AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials. The Journal of Chemical Physics, 2020. 153(4): p. 044112. Bereau, T., et al., Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning. The Journal of chemical physics, 2018. 148(24): p. 241706. Metcalf, D.P., et al., Approaches for machine learning intermolecular interaction energies and application to energy components from symmetry adapted perturbation theory. The Journal of chemical physics, 2020. 152(7): p. 074103. Schriber, J.B., et al., CLIFF: A component-based, machine-learned, intermolecular force field. The Journal of Chemical Physics, 2021. 154(18): p. 184110. Tyagi, O.S., H.S. Bisht, and A.K. Chatterjee, Phase transition, conformational disorder, and chain packing in crystalline long-chain symmetrical alkyl ethers and symmetrical alkenes. The Journal of Physical Chemistry B, 2004. 108(9): p. 3010-3016. Hobza, P., R. Zahradník, and M. STULIKOVA, Intermolecular complexes: the role of van der Waals systems in physical chemistry and in the biodisciplines. Studies in physical and theoretical chemistry, 1988. 52: p. 1-307. Jeffrey, G.A. and W. Saenger, Hydrogen bonding in biological structures. 2012: Springer Science & Business Media. Gaussian 09, R.A., M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. Parker, T.M., et al., Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. The Journal of chemical physics, 2014. 140(9): p. 094106. Dunning, T.H., A road map for the calculation of molecular binding energies. The Journal of Physical Chemistry A, 2000. 104(40): p. 9062-9080. Stone, A., The theory of intermolecular forces. 2013: oUP oxford. Grimme, S., et al., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 2010. 132(15): p. 154104. Marchetti, O. and H.-J. Werner, Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. The Journal of Physical Chemistry A, 2009. 113(43): p. 11580-11585. Raghavachari, K., et al., A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 1989. 157(6): p. 479-483. Simon, S., M. Duran, and J. Dannenberg, How does basis set superposition error change the potential surfaces for hydrogen‐bonded dimers? The Journal of chemical physics, 1996. 105(24): p. 11024-11031. Boys, S.F. and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 1970. 19(4): p. 553-566. Jeziorski, B., R. Moszynski, and K. Szalewicz, Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 1994. 94(7): p. 1887-1930. Pastorczak, E. and C. Corminboeuf, Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions. The Journal of chemical physics, 2017. 146(12): p. 120901. Szalewicz, K., Symmetry‐adapted perturbation theory of intermolecular forces. Wiley interdisciplinary reviews: computational molecular science, 2012. 2(2): p. 254-272. McDaniel, J.G. and J. Schmidt, Physically-motivated force fields from symmetry-adapted perturbation theory. The Journal of Physical Chemistry A, 2013. 117(10): p. 2053-2066. Behler, J. and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical review letters, 2007. 98(14): p. 146401. Smith, J.S., O. Isayev, and A.E. Roitberg, ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chemical science, 2017. 8(4): p. 3192-3203. Schütt, K.T., et al., Quantum-chemical insights from deep tensor neural networks. Nature communications, 2017. 8(1): p. 1-8. Lubbers, N., J.S. Smith, and K. Barros, Hierarchical modeling of molecular energies using a deep neural network. The Journal of chemical physics, 2018. 148(24): p. 241715. Unke, O.T. and M. Meuwly, PhysNet: a neural network for predicting energies, forces, dipole moments, and partial charges. Journal of chemical theory and computation, 2019. 15(6): p. 3678-3693. Stone, A. and A. Misquitta, Atom–atom potentials from ab initio calculations. International Reviews in Physical Chemistry, 2007. 26(1): p. 193-222. Bader, R.F., A quantum theory of molecular structure and its applications. Chemical Reviews, 1991. 91(5): p. 893-928. Verstraelen, T., et al., Minimal basis iterative stockholder: atoms in molecules for force-field development. Journal of Chemical Theory and Computation, 2016. 12(8): p. 3894-3912. Hirshfeld, F.L., Bonded-atom fragments for describing molecular charge densities. Theoretica chimica acta, 1977. 44(2): p. 129-138. Unke, O.T., et al., Machine learning force fields. Chemical Reviews, 2021. Bishop, C.M., Neural networks for pattern recognition. 1995: Oxford university press. Muller, K.-R., et al., An introduction to kernel-based learning algorithms. IEEE transactions on neural networks, 2001. 12(2): p. 181-201. Rupp, M., et al., Fast and accurate modeling of molecular atomization energies with machine learning. Physical review letters, 2012. 108(5): p. 058301. AS Christensen, L.B., FA Faber, B Huang, A Tkatchenko, KR Muller, OA von Lilienfeld (2017) 'QML: A Python Toolkit for Quantum Machine Learning' https://github.com/qmlcode/qml. Huang, B. and O.A. von Lilienfeld, Quantum machine learning using atom-in-molecule-based fragments selected on the fly. Nature Chemistry, 2020. 12(10): p. 945-951. Mendez, D., et al., ChEMBL: towards direct deposition of bioassay data. Nucleic acids research, 2019. 47(D1): p. D930-D940. Turney, J.M., et al., Psi4: an open‐source ab initio electronic structure program. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012. 2(4): p. 556-565. 67T. Verstraelen, P.T., F. Heidar-Zadeh, C. E. González-Espinoza, M. Chan,, K.B. T. D. Kim, S. Fias, S. Vandenbrande, D. Berrocal, and P. W. Ayers,, and HORTON 2.1.1, 2017. Rackers, J.A., et al., An optimized charge penetration model for use with the AMOEBA force field. Physical Chemistry Chemical Physics, 2017. 19(1): p. 276-291. Van Vleet, M.J., et al., Beyond born–mayer: Improved models for short-range repulsion in ab initio force fields. Journal of chemical theory and computation, 2016. 12(8): p. 3851-3870. Van Vleet, M.J., A.J. Misquitta, and J. Schmidt, New angles on standard force fields: Toward a general approach for treating atomic-level anisotropy. Journal of chemical theory and computation, 2018. 14(2): p. 739-758. Thole, B.T., Molecular polarizabilities calculated with a modified dipole interaction. Chemical Physics, 1981. 59(3): p. 341-350. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85778 | - |
dc.description.abstract | 先前透過量子化學計算方法已建立常見官能基二聚體交互作用能之數據庫,但隨著分子結構的增大,基於此方法的計算成本倍數增加,因此實驗室的數據庫基本停留在十數個到二十個重原子左右。我們不希望止步與此,但是繼續使用CPU-based的量子化學計算方法又有所困難,因此我們嘗試以現有的數據庫結合機器學習的方法,以得到計算成本低且穩定可靠的替代方法。 我們選擇了結合機器學習方法以及交互作用能物理模型相結合的計算方法,相較於純粹的機器學習,此法更能控制結果並觀察相關的物理意義。我們利用量子化學計算中的對稱性匹配微擾理論(SAPT),其將交互作用拆分為四個不同物理意義的作用,分別為是靜電能、交換能、色散能與誘導能,利用數學式描述這四項交互作用的物理現象,並以SAPT所計算的能量對物理模型擬合,以此得到能夠更快計算分子間交互作用能的手段。 我們相信,實驗室過去以常見官能基、二聚體的總原子數由小到大等規則所建立的數據庫應能更好的訓練模型,並且為了應付更大範圍的分子種類,我們自其他學者所公布的資料集中挑選相似性質的資料進行補充,並將結果測試在各常見之資料集,以此驗證結果的可靠度。 | zh_TW |
dc.description.abstract | Previously, a database of common functional group dimer interaction energies was established through quantum chemical calculation methods, but with the increase of the size of molecular structure, the computing cost based on this method become higher and higher. Therefore, our database stayed between 10-20 heavy atoms’ dimers. This is not what we want to see, but it is difficult to keep using the CPU-based quantum chemical calculation methods. So we try to combine our current database with machine learning, hoping to get a reliable and stable alternative method. We choose a computational approach that combines a machine learning method with some physics models of the interaction energy, which allows more control over the results and observation of the relevant physical meanings. We use the Symmetry-Adapted Perturbation Theory(SAPT) in quantum chemical calculations, which divides the interaction into four terms with different physical meanings, namely electrostatic energy, exchange energy, dispersion energy, and induced energy. By using the mathematical formula described those four interactions’ physical phenomena, supplemented by fitting the model with the value calculated from SAPT. Then we get a method that can compute higher molecular weight dimers at a low computational cost. We believe that the database established by the laboratory in the past which complies with the rules of common functional groups and the total number of atoms of dimer molecules that grow from small to large should be able to adequately train the model. And to cope with a wider range of molecular species, we use some similar properties’ database to supplement. Then results are tested in various common datasets to verify the reliability. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:24:05Z (GMT). No. of bitstreams: 1 U0001-2704202216581300.pdf: 4288294 bytes, checksum: 3c76a8bd50654a8306a62216b43519b2 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 目錄 致謝 I 摘要 II ABSTRACT III 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究動機 1 1.2 分子間作用力介紹 1 1.3 計算分子間作用力方法介紹 3 第二章 基本理論介紹 4 2.1 量子力學理論 4 2.1.1 薛丁格方程式(Schrödinger equation) 4 2.1.2 波恩奧本海默近似(Born-Oppenheimer Approximation) 6 2.2 對稱性匹配微擾理論Symmetry-Adapted Perturbation Theory(SAPT) 9 第三章 計算方法 11 3.1 原子參數計算與機器學習 12 3.1.1 基本理論 12 3.1.2 機器學習介紹 13 3.1.3 CLIFF中的KRR 14 3.2 分量方程式(Component functional forms) 14 3.2.1 靜電能(Electrostatics Energy) 14 3.2.2 交換能(Exchange Energy) 15 3.2.3 色散能(Dispersion Energy) 16 3.2.4 感應能(Induction Energy) 17 3.3 參數擬合 18 3.3.1 原子種類與損耗函數 18 3.3.2 二聚體的種類與名稱 19 3.3.3 CLIFF的擬合資料集 21 3.4 資料集 24 3.4.1 SOFG-31/SOFG-31-bimer 24 3.4.2 HB375x10 24 3.4.3 Des370k 26 第四章 結果與討論 29 4.1 以SOFG-31作為擬合集 29 4.1.1 SOFG-31-bimer預測結果與比較 32 4.2 以Dimer 31+47作為擬合集 36 4.2.1 SOFG-31-bimer計算結果與比較 40 4.2.2 HB375中的平衡點計算結果與比較 41 4.2.3 HB375x10計算結果與比較 45 4.2.4 Des370k計算結果與比較 50 第五章 結論與未來展望 56 5.1 結論 56 5.2 未來展望 57 參考文獻 58 附錄 61 1. HB375x10計算結果圖 61 2. Des370k計算結果圖 72 | |
dc.language.iso | zh-TW | |
dc.title | 利用SAPT 資料集建立基於機器學習與物理模型的分子間交互作用能計算方法 | zh_TW |
dc.title | Method for intermolecular interaction energy calculation using SAPT databases based on machine learning and physical models | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭原忠,張書瑋,蔡政達,陳志鴻 | |
dc.subject.keyword | 交互作用能數據庫,非共價交互作用力,對稱性匹配微擾理論,機器學習,人工智慧,SAPT, | zh_TW |
dc.subject.keyword | interaction energy database,non-covalent interaction force,symmetry-adapted perturbation theory,SAPT,machine learning,artificial intelligence, | en |
dc.relation.page | 83 | |
dc.identifier.doi | 10.6342/NTU202200729 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-04-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
dc.date.embargo-lift | 2025-09-01 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2704202216581300.pdf 此日期後於網路公開 2025-09-01 | 4.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。