Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85775
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊昀叡(Yun-Ruei Chuang)
dc.contributor.authorChin-Yi Linen
dc.contributor.author林靜儀zh_TW
dc.date.accessioned2023-03-19T23:23:59Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-05-05
dc.identifier.citationAvouac, J. P. (2008). Dynamic Processes in Extensional and Compressional Settings - Mountain Building: From Earthquakes to Geological Deformation. Treatise on Geophysics, 6: 377-439. Avouac, J. P., Meng, L., Wei, S., Wang, T., and Ampuero, J. P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 8: 708-711. Bakker, M. and Lane, S.N. (2016). Archival photogrammetric analysis of river–floodplain systems using Structure from Motion (SfM) methods. Earth Surface Process and Landforms, 42: 1274-1286. Beyer, R. A., Alexandrov, O., and McMichael, S. (2018). The Ames Stereo Pipeline: NASA's Open Source Software for Deriving and Processing Terrain Data. Earth and Space Science, 5: 537-548. Broeckx, J., Rossi, M., Lijnen, K., Campforts, B., Poesen, J., and Vanmaercke, M. (2019). Landslide mobilization rates: A global analysis and model. Earth-Science Reviews, 201:102972. Burbank, D. W. and Anderson, R.S. (2011). Tectonic Geomorphology, 2nd Edition, 460 Pages. Burns, J. H. R., and Delparte, D. (2017). Comparison Of Commercial Structure-from-motion Photogrammety Software Used For Underwater Three-dimensional Modeling Of Coral Reef Environments. Gottingen: Copernicus GmbH., XLII-2/W3: 127-131. Carvalho, R.C., Kennedy, D.M., Niyazi, Y., Leach, C., Konlechner, T.M. and Ierodiaconou, D. (2020). Structure-from-motion photogrammetry analysis of historical aerial photography: Determining beach volumetric change over decadal scales. Earth Surface Process and Landforms, 45: 2540-2555. Chan, C. H., Ma, K. F., Shyu, J. B. H., Lee, Y. T., Wang, Y. J., Gao, J. C., Yen, Y. T., and Rau, R. J. (2020). Probabilistic seismic hazard assessment for Taiwan: TEM PSHA2020. Earthquake Spectra, 36, 137-159. Chang, S. L. (1971). Subsurface geologic study of the Taichung basin. Taiwan. Petroleum Geology of Taiwan, 8: 21-45. Chen, J. S. (1974). Seismic study of the Paoshan Structure Structure, Hsinchu, Taiwan, Petroleum Geology of Taiwan, 11: 183-295. Chen, Y. G., Chen, W. S., Lee, J. C., Lee, Y. H., Lee, C. T., Chang, H. C. and Lo, C. H. (2001). Surface Rupture of 1999 Chi-Chi Earthquake Yields Insights on Active Tectonics of Central Taiwan. Bulletin of the Seismological Society of America, 91: 977-985. Chen, Y. G., Shyu, J. B. H., Ota, Y., Chen, W. S., Hu, J. C., Tsai, B. W., and Wang, Y. (2004). Active structures as deduced from geomorphic features a case in Hsinchu area, northwestern Taiwan. Quaternary International, 115-116: 189-199. Chiba, T., Kaneta, S. I., and Suzuki, Y. (2008). Red Relief Image Map new visualization method for three dimensional data. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 37: 1071-1076. Ching, K. E., Johnson, K. M., Rau, R. J., Chuang, R. Y., Kuo, L. C., and Leu, P. L. (2011). Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model. Earth and Planetary Science Letters, 301: 78-86. Chiu, H.T. (1971). Folds in the northernhalf of western Taiwan. Petroleum Geology of Taiwan, 8: 7-19 Chuang, R. Y., Lu, C. H., Yang, C. J., Lin, Y. S., and Lee, T. Y. (2020). Coseismic uplift of the 1999 Mw7.6 Chi-Chi earthquake and implication to topographic change in frontal mountain belts. Geophysical Research Letters, 47: e2020GL088947. Cook, K. L. (2016). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278: 195-208. Elliott, J. R., Jolivet, R., González, P. J., Avouac, J. P., Hollingsworth, J., Searle, M. P., and Stevens, V. L. (2016). Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nature Geoscience, 9: 174-180. Eltner, A. and Schneider, D. (2015) Analysis of Different Methods for 3D Reconstruction of Natural Surfaces from Parallel-Axes UAV Images. The Photogrammetric Record, 30: 279–299. Fan, X., Scaringi, G., Korup, O., West, A.J., van Wesen, C.J., Tanyaş, H., Hovius, N., Hales, T.C., Jibson, R.W., Allstadt, K.E., Zhang, L., Evans, S.G., Xu, C., Li, G., Pei, X., Xu, Q. and Huang, R. (2019) Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Reviews of Geophysics, 57(2): 421–503. Fryer, J., Mitchell, H., and Chandler, J. (2007). Applications of 3D measurement from images. Whittles Publishing: Dunbeath, 1-312. Gomeza, C., Hayakawa, Y., Obanawa, H. (2015) A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology, 242: 11-20 Grapes, R. H. and Wellman, H. W. (1993), Wharekauhau Thrust (Palliser Bay) and Wairarapa Fault (Pigeon Bush). Geological Society of New Zealand miscellaneous publication, 79B: 27-44. Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., and Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279: 222-229. Harwin, S., Lucieer, A., and Osborn, J. (2015). The impact of the calibration method on the accuracy of point clouds derived using unmanned aerial vehicle multi-view stereopsis. Remote Sensing, 7: 11933–11953. Hovius, N., Meunier, P., Lin, C. W., Chen, H., Chen, Y. G., Dadson, S., Horng, M. J., and Lines, M. (2011). Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth and Planetary Science Letters, 304: 347-355. Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor J., and Rosette, J. (2019). Structure from motion photogrammetry in forestry: A review. Current Forestry Reports, 5: 155-168 Kao, H. and Chen, W.-P. (2000). The Chi-Chi earthquake sequence: Active, out-of-sequence thrust faulting in Taiwan. Science, 288: 2346-2349. Keefer, D.K. (1984) Landslides caused by earthquakes. GSA Bulletin, 95 (4): 406-421. Keefer, D.K. (2002) Investigating Landslides Caused by Earthquakes – A Historical Review. Surveys in Geophysics 23: 473–510. Keller, E. A. and Pinter, N. (2002) Active Tectonics, Earthquakes, Uplift and Landscape. 2nd Edition, Prentice Hall, Upper Saddle River, 1-362 Ku, C.C. (1963). Photogeologic study of terraces in north-western Taiwan. Proc. Geol. Soc. China, 6: 51-60. Kuo, Y. T., Ayoub, F., Leprince, S., Chen, Y. G., Avouac, J. P., Shyu, J. B. H., Lai, K. Y., and Kuo, Y. J. (2014). Coseismic thrusting and folding in the 1999Mw7.6 Chi-Chi earthquake: A high-resolution approach by aerial photos taken from Tsaotun, central Taiwan. Journal of Geophysical Research: Solid Earth, 119: 645-660. Kuo, Y. T., Wang, Y., Hollingsworth, J., Huang, S. Y., Chuang, R. Y., Lu, C. H., Hsu, Y. C., Tung, H., Yen, J. Y., and Chang, C. P. (2018). Shallow Fault Rupture of the Milun Fault in the 2018 Mw 6.4 Hualien Earthquake: A High‐Resolution Approach from Optical Correlation of Pléiades Satellite Imagery. Seismological Research Letters, 90: 97-107. Lague, D, Brodu, N, and Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetric Remote Sensing 82: 10–26. Larsen, I. J., Montgomery, D. R., and Korup, O. (2010). Landslide erosion controlled by hillslope material. nature geoscience, 3: 247-251. Lee, C. T. (2013). Re-Evaluation of Factors Controlling Landslides Triggered by the 1999 Chi–Chi Earthquake. Earthquake-Induced Landslides, 213-224. Lee, J. C., Chu, H. T., Angelier, J., Chan, Y. C., Hu, J. C., Lu, C. Y., and Rau, R. J. (2002). Geometry and structure of northern surface ruptures of the 1999 Mw=7.6 Chi-Chi, Taiwan Earthquake: influence from inherited Fold Belt structures. Journal of Structural Geology, 24: 173-192. Lee, Y. H., Hsieh, M. L., Lu, S. D., Shih, T. S., Wu, W. Y., Sugiyama, Y., Azuma, T., and Kariya, Y. (2003). Slip vectors of the surface rupture of the 1999 Chi-Chi earthquake, western Taiwan. Journal of Structural Geology, 25: 1917-1931. Lee, Y. H. (2005). Structures Associated with the Northern End of the 1999 Chi-Chi Earthquake Rupture, Central Taiwan: Implications for Seismic-Hazard Assessment. Bulletin of the Seismological Society of America, 95: 471-485. Lee, Y. H., Lu, S. T., Shih, T. S. Hsieh, M. L., and Wu, W. Y. (2005). Structures associated with the northern end of the 1999 Chi-Chi earthquake rupture, central Taiwan, implications for seismic-hazard assessment. Bulletin of the Seismological Society of America, 95: 471-485. Li, G., West, A. J., Densmore, A. L., Jin, Z., Parker, R. N., and Hilton, R. G. (2014). Seismic mountain building: Landslides associated with the 2008 Wenchuan earthquake in the context of a generalized model for earthquake volume balance. Geochemistry, Geophysics, Geosystems, 15: 833-844. Li, G., West, A.J. and Qiu, H. (2019). Competing Effects of Mountain Uplift and Landslide Erosion Over Earthquake Cycles. Journal of Geophysical Research: Solid Earth, 124: 5101-5133. Lucieer, A, de Jong, S. M., and Turner, D. (2013). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38: 97–116. Luhmann, T. and Robson, S. (2011). Close Range Photogrammetry: Principles, Methods and Applications; Cdr ed.; Whittles Publishing: Dunbeath, UK Ma, K. F., Lee, C. T., Tsai, Y. B., Shin, T. C., and Mori, J. (1999). The Chi‐Chi, Taiwan earthquake: Large surface displacements on an inland thrust fault. Eos, 80: 605-611. Ma, R., Broadbent, M. and Zhao, X. (2020). Historical Photograph Orthorectification Using SfM for Land Cover Change Analysis. Journal of the Indian Society of Remote Sensing, 4: 341–351. Meade, B.J. (2010). The signature of an unbalanced earthquake cycle in Himalayan topography? Geology, 38: 987-990. Milliner C. W. D., Dolan, J. F., Hollingsworth, J., Leprince, S., Ayoub, F., and Sammis C. G. (2015). Quantifying near-field and off-fault deformation patterns of the 1992 Mw7.3 Landers earthquake: Geochemistry, Geophysics, Geosystems, 16: 1577–1598. Mölg, N. and Bolch, T. (2017). Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sensing, 9(10):1021. Molnar, P., Brown, E. T., Burchfiel, B. C., Deng, Q., Feng, X., Li, J., Raisbeck, G. M., Shi, J., Wu, Z., Yiou, F., & You, H. (1994). Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tien Shan, China. Journal of Geology, 102(5), 583–602. Niederheiser, R., Mokros, M., Lange, J., Petschko, H., Prasicek, G. and Elberink, S. O. (2016). Deriving 3d point clouds from terrestrial photographs comparison of different sensors and software. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B5: 685-692. Parker, R. N., Densmore, A. L., Rosser, N. J., de Michele, M., Li, Y., Huang, R., Whadcoat, S., and Petley, D. N. (2011). Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nature Geoscience, 4: 449-452. Rockwell, T.K., Keller, E.A., Clark, M.N. and Johnson, D.L. (1984) Chronology and rates of faulting of Ventura River terraces, California. Geological Society of America Bulletin, 95(12): 1466–1474. Rubin, C. M., Sieh, K., Chen, Y. G., Lee, J. C., Chu, H. T., Yeats, R., Mueller, K., and Chan, Y. C. (2001). Surface rupture and behavior of thrust faults probed in Taiwan. Eos, 82, 565-569. Sevara, C. (2016). Capturing the past for the future: An evaluation of the effect of geometric scan deformities on the performance of aerial archival media in image-based modelling environments. Archaeological Prospection, 23(4): 325–334. Shyu, J. B. H., Sieh, K., Chen, Y. G., and Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research, 110(B08402), 33. Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., and Cheng, C. T. (2016). A new on-land seismogenic structure source database by the Taiwan. Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27: 311-323 Shyu, J. B. H., Yin, Y. H., Chen, C. H., Chuang, Y. R., and Liu, S. C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 31(4), 469-478. Snavely, N., Seitz, S. M., and Szeliski, R. (2008). Modeling the world from internet photo collections. International Journal of Computer Vision, 80: 189–210. Tang, C. H. (1968). Photogeological observations on the low hilly terrain and coastal plain area of Hsinchu, Taiwan, Petroleum geology of Taiwan, 4: 35-52. Thompson, S.C., Weldon, R.J., Rubin, C.M., Abdrakhmatov, K., Molnar, P. and Berger, G.W. (2002). Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. Journal of Geophysical Research: Solid Earth, 107:TG 7-1-ETG 7-32 Wackrow, R. and Chandler, J. H. (2008). A convergent image configuration for DEM extraction that minimises the systematic effects caused by an inaccurate lens model. The Photogrammetric Record, 23: 6–18. Wang, W. N., Nakamura, H., Tsuchiya, S., and Chen, C. C. (2002). Distributions of landslides triggered by the Chi-chi Earthquake in Central Taiwan on September 21, 1999. Landslides, 38: 318 - 326. Wang, Y. J., Lee, Y. T., Chan, C. H., and Ma, K. F. (2016). An investigation of reliability of the Taiwan Earthquake MModel PSHA2015. Seismological Research Letters, 87, 1287-1298. Wang, Y.J., Chan, C.H., Lee, Y.T., Ma, K.F., Shyu, J.B.H., Rau, R.J., and Cheng, C.T. (2016). Probabilistic Seismic Hazard Assessment for Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 27, 325 - 340. Wells, D. L. and Coppersmith K. J. (1994). New Empirical Relationships among Magnitude, Rupture Length, Rupture width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84: 974-1002. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179: 300-314. Whipple, K. X., Shirzaei, M., Hodges, K.V., and Arrowsmith, J. R. (2016). Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake. Nature Geoscience, 9: 711-716. Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., and Nakamura, M. (2008). A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bulletin of the Seismological Society of America, 98: 1471-1481. Xu, C., Xu, X., Gorum, T., Westen, C.J., and Fan, X. (2014). Did the 2008 Wenchuan Earthquake Lead to a Net Volume Loss? Landslide Science for a Safer Geoenvironment, 3: 191 - 196. Xu, C., Xu, X., Shen, L., Yao, Q., Tan, X., Kang, W., Ma, S., Wu, X., Cai, J., Gao, M., and Li, K. (2016). Optimized volume models of earthquake-triggered landslides. Scientific Reports, 6: 29797. Yang, M., Rau, R. J., Yu, J. Y., and Yu, T. T. (2000). Geodetically observed surface displacements of the 1999 Chi-Chi, Taiwan, earthquake. Earth, Planets and Space, 52: 403–413. Yang, M., Tseng, C. L., and Yu, J. Y. (2001). Establishment and Maintenance of Taiwan Geodetic Datum 1997. Journal of Surveying Engineering, 127: 119-132. Yokoyama, R., Shirasawa, M., and Pike, R. J. (2002). Visualizing topography by openness: a new application of image processing to digital elevation models, Photogrammetric Engineering and Remote Sensing, 68: 257-265. Yu, S. B., Chen, H. Y., and Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274: 41-59. Yu, S. B., Kuo, L. C., Punongbayan, R. S., and Ramos, E. G. (1999). GPS observation of crustal deformation in the Taiwan-Luzon Region. Geophysical Research Letters, 26: 923-926. Yu, S. B., Kuo, L. C., Hsu, Y. J., Su, H. H., Liu, C. C., Hou, C. S., Lee, J. F., Lai, T. C., Liu, C. C., Liu, C. L., Tseng, T. F., Tsai, C. S., and Shin, T. C. (2001). Preseismic Deformation and Coseismic Displacements Associated with the 1999 Chi-Chi, Taiwan, Earthquake. Bulletin of the Seismological Society of America, 91: 995-1012. Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D. Wang, X., and Yan, G. (2016). An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sensing, 8: 501. 經濟部中央地質調查所 (1999). 1/25000九二一地震地質調查報告,集集地震地表破裂地形測量 經濟部中央地質調查所 (2000). 九二一地震地質調查報告 石同生、林偉雄、李元希、盧詩丁、林燕慧、劉彥求、黃存慧、林啟文 (2003a) 活動斷層調查報告:新城斷層,經濟部中央地質調查所施政計畫報告 石同生、盧詩丁、林偉雄、李元希(2003b). 新城斷層定位與斷層活動性研究,經濟部中央地質調查所特刊,第十四號:37-52 石再添、張瑞津(1982). 活斷層研究的簡介,國立台灣師範大學地理教育,第八期:11~18 石再添、鄧國雄、張瑞津、楊貴三(1985). 竹東台地的活斷層與地形面。國立台灣師範大學地理研究所報告,第12期:1-44 沈淑敏,張瑞津,楊貴三(2006). 地震地質調查及活動斷層資料庫建置計畫-活動構造地形判釋及資料建置分析總報告。經濟部中央地質調查所報告第95-13總號:1-101 林啟文,張徽正,盧詩丁,石同生,黃文正(2000). 臺灣活動斷層概論—五十萬分之一台灣活動斷層分布圖說明書(第二版),經濟部中央地質調查所特刊,第十三號,共122頁 林啟文、劉彥求、周稟珊、林燕慧(2021). 臺灣活動斷層調查的近期發展,經濟部中央地質調查所彙刊,第34號,1 – 40 施國偉(2008). 三義斷層上盤區域活動構造之研究以枕頭山—卓蘭地區為例。國立臺灣大學地質科學研究所碩士論文,共62頁 陳振宇,陳昭岑,白佩鑫,林宥伯,施佩昱,高百毅,詹婉妤 (2021). H.O.S.T地圖及CS地圖判釋與應用BigGIS繪製判釋圖資,水土保持局技術研究發展小組,行政院農業委員會水土保持局 景國恩,楊名,陳鶴欽,林文勇,梁旭文,劉正倫 (2017). 臺灣半動態基準之建立與展望,國土測繪與空間資訊,第五卷: 83 - 109. 楊貴三(1986). 臺灣活斷層的地形學研究—特論活斷層與地形面的關係。中國文化大學地學研究所博士論文,共178頁. 楊貴三,蔡怡真 (2003). 臺灣北部新竹與新城斷層之地形學研究 經濟部中央地質調查所, 經濟部中央地質調查所特刊,第14號,25 - 35 張瑞津,鄧國雄,劉明錡(1999). 頭前溪河階之地形學研究,臺灣師大地理研究報告,31: 61-82 張瑞津,沈淑敏,楊貴三(2002). 臺灣島河階地形資料庫的建置,《地震地質調查及活動斷層資料庫建置計畫》,經濟部中央地質調查所,共96頁 陳文山、劉力豪、顏一勤、楊小青、李龍昇、游能悌、張徽正、石瑞銓、陳于高、李元希、林偉雄、石同生、盧詩丁(2003). 新城斷層的古地震研究,經濟部中央地質調查所特刊,第十四號:11-23 陳于高(2003). 地震地質調查及活動斷層資料庫建置計畫:槽溝開挖與古地震研究計畫(2/5)—熱螢光與光螢光定年,4 – 7 陳冠榮(2020). 使用精密水準測量推估現今臺灣活動構造的垂直變形速率。國立臺灣大學地理環境資源系學士論文,共150頁 劉力豪(2004). 竹東丘陵的活動斷層股地震及相關活動性。國立臺灣大學地質科學研究所碩士論文,共90頁 日本活斷層研究會 (1992) 日本の活断層の分布図資料。活断層研究会編,東京大學出版会,共73頁 戸田堅一郎(2012). 航空レーザ測量データを用いた微地形図の作 成.砂防学会誌,65(2): 51 - 55 戸田堅一郎(2012). 数値地形データを用いた「微地形図」の作成方法. http://www. pref. nagano.lg.jp/ringyosogo/seika/documents/bichikei.pdf 富田芳郎(1937). 淡水河河岸段丘の地形面對比に就て,台灣地學記事,第 8 卷,101 – 119
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85775-
dc.description.abstract地形特徵是用來判釋構造活動區活動構造的重要工具,地形特徵可以記錄過去構造活動的痕跡,並可以用來推估構造活動的歷史。地形特徵判釋也有其限制,雖然近年來由於科技進步,有越來越多高解析度的數值高程模型(DEM),但快速的工業化和都市化也會使地形特徵可能會在現在的 DEM 中消失或被改變。因此,從歷史影像中我們可以看到未被都市發展改變的地形特徵。與傳統航空攝影測量相比,運動回復結構(Structure from Motion, SfM)技術需要的相機參數更少,適合應用在受到保存條件限制而使相機參數被改變的歷史航空影像,使用SfM技術由歷史航照片生成的DEM具有更高的空間解析度。因此,本研究旨在透過使用歷史航拍照片、SfM 技術和地面控制點製作高解析度 3D 模型來分析構造地形。 由於台灣位在聚合板塊邊界,構造地形的研究對於分析活動構造來說非常重要。新竹地區是台灣人口眾多的主要城市和高科技產業開發區(新竹科學園區),由於距離新竹斷層和新城兩個活動斷層非常接近,因此有可能會受到斷層活動的災害。本研究使用新竹地區的歷史航空影像(1973~1975年)與應用SfM技術的AgiSoft Metashape所產生的1 m DEM ,測繪新竹地區的頭前溪西岸的河階。透過DEM的地形特徵和定年資料,本研究將頭前溪河階群分為五階(LT1、LT2、LT3、FT1和FT2),並測繪出新竹斷層和新城斷層的構造崖與青草湖背斜的所在位置。最後透過將各階面構造崖崖高與定年資料比對分析,估計新竹頭前溪西岸地區的長期抬升速率約為每年1.12mm。zh_TW
dc.description.abstractGeomorphic features are vital tools for identifying active structures in tectonically-active region, and they can record traces of past tectonic activities, which therefore can be used to estimate the history of active structures. One challenge for such analysis is that geomorphic features might be modified in present-day DEM data because of rapid industrialization and urbanization in recent years. Therefore, from historical photos, ones can see geomorphic features that had not been modified by the urban development. Compared with aerial photogrammetry, the Structure from Motion (SfM) technique requires fewer photo parameters, and the DEM generated by historical aerial photos with SfM technique has higher spatial resolution. Thus, this study aims to analyze tectonic geomorphology via generating high-resolution 3D model by using historical aerial photos, the SfM technique, and Ground Control Points. Because Taiwan is located at a rapid-convergent plate boundary, the study of tectonic geomorphology is very important for analyzing highly-deformed active structures. The Hsinchu area is one major city with a large population in Taiwan and a high-technological industry development area (Hsinchu Science Park), which is at risk of fault activities because it is located very close to two active faults: the Hsinchu fault and Hsincheng fault. In this research, I mapped and correlated terraces along the southern stretch of Touchien River, which is near these two faults in Hsinchu area, by using the SfM-generated DEM. Based on the SfM-generated DEM, I divided Touchien River Terraces into five classes (LT1, LT2, LT3, FT1, and FT2) and identified the anticline and the fault scarps of Hsinchu fault and Hsincheng fault. By adapting the dating results from previous studies and the height of fault scarps in each terrace, the estimated long-term uplift rate in Touchien River Terraces area is about 1.12 mm/year.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:23:59Z (GMT). No. of bitstreams: 1
U0001-2704202223262300.pdf: 16755266 bytes, checksum: 659fe49344815dee4a3f63a50ea66a55 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 ii 致謝 iii 摘要 iv Abstract v 目錄 vi 圖目錄 viii 表目錄 x 第一章 概論 1 1.1 研究背景 1 1.2 研究目的 6 第二章 文獻回顧 7 2.1 河流階地 7 2.2 活動構造與斷層 9 2.3 構造地形特徵 13 第三章 研究區域 17 3.1 地質背景 17 3.2 新竹地區大地測量 18 3.3 新竹斷層 21 3.4 新城斷層 21 3.5 頭前溪河階 22 3.5 新竹地區古地震事件 25 第四章 研究方法 27 4.1 研究流程 27 4.2 研究範圍 27 4.3 研究資料 28 4.3 地形模型建立 30 4.3.1 Structure from Motion with multi-view stereo 30 4.3.2 Agisoft Metashape 32 4.3.3 地面控制點(Ground Control Points) 34 4.3.4 修正地表建物高程 38 4.4 河階階面測繪 39 第五章 研究結果 43 5.1 頭前溪河階地區地形成果圖 43 5.2 頭前溪階面繪製成果 50 5.3 構造活動 58 5.3.1 新竹斷層與新城斷層構造崖 58 5.3.2 青草湖背斜 58 5.3.3 小尺度構造 61 第六章 討論 63 6.1 歷史航空影像建模於判釋地形特徵的應用 63 6.2 與前人研究結果比較 72 6.3 構造活動分析 73 6.4 河階與河道的地形歷史 76 第七章 結論 79 引用文獻 81 附錄1 歷史航空影像列表 88 圖1- 1. 台灣的地質構造環境(景國恩等人,2017)。 2 圖1- 2. 台灣44條孕震構造於未來50年之發震機率圖(Chan et al., 2020)。 3 圖1- 3. 新竹市區與新竹科學園區位置,以及新竹斷層與新城斷層位置圖(斷層資料來源為中央地質調查所2022年1/25,000台灣活動斷層分布圖)。 4 圖1- 4. 頭前溪河階過去與現在的正射影像和高程比較。 5 圖2- 1. 岩床河階(Aii)、沖積河階(Ai)、成對階地(Bi)和不成對階地(Bii)比較圖(Burbank and Anderson, 2011)。 8 圖2- 2. 台灣主要的陸上地震構造分布圖 (Shyu et al., 2020)。 11 圖2- 3. 2021年活動斷層分布圖(斷層資料來源:中央地質調查所臺灣活動斷層分布圖2021年版)。 12 圖2- 4. 斷層活動造成地形變動示意圖(日本活斷層研究會,1992)。 14 圖2- 5. 走向滑移斷層造成的斷頭河(Grapes and Wellman, 1993)。 15 圖2- 6. 河階的四種構造變形(改繪自Keller and Pinter, 2002)。 16 圖3- 1. 新竹頭前溪河階地區地質圖(改繪自經濟部中央地質調查所2013年地層與活動斷層分布圖)。 17 圖3- 2. 新竹頭前溪河階地區十萬分之一地質圖(改繪自1982年中國石油股份有限公司臺灣油礦探勘總處)。 18 圖3- 3. 相對S01R澎湖白沙站之GPS連續站水平年速度場(左圖)與垂直年速度場(右圖)(整合歷史資料至2020年9月)。 19 圖3- 4. 新竹地區水準測量線分布圖(改繪自陳冠榮,2020)。 20 圖3- 5. 新竹-五峰水準測量結果(陳冠榮,2020)。 20 圖3- 6. 新竹-峨嵋水準測量結果(陳冠榮,2020)。 21 圖3- 7. 頭前溪南岸新城斷層露頭(陳文山等人,2003)。 22 圖3- 8. 張瑞津等人(1999)測繪之頭前溪階地圖。 23 圖3- 9.張瑞津等人(2002)測繪之頭前溪河階。 23 圖3- 10. 陳文山等人(2003)測繪之頭前溪河階。 24 圖3- 11. Chen et al. (2004)測繪之頭前溪河階。 24 圖3- 12. 新城斷層截切頭前溪階地之露頭。(拍攝日期:2021/12/5) 25 圖3- 13. 新竹地區地震分布圖。(Chen et al., 2004) 26 圖4- 1. 研究流程圖。 27 圖4- 2. 研究範圍圖。 28 圖4- 3. 1973~1975年研究區域使用航照分布圖。 29 圖4- 4. 歷史航空影像範例。 29 圖4- 5. SfM示意圖 (Westoby et al., 2012)。 31 圖4- 6. SfM運作流程 (Iglhaut et al., 2019)。 32 圖4- 7. AgiSoft Metashape的密點雲範例圖。 34 圖4- 8. 地面控制點分布圖。 35 圖4- 9. 地面控制點設立示意圖。 36 圖4- 10. C2C法與C2M法示意圖。 37 圖4- 11. 5 m DEM與 20 m DEM高程相減結果圖。 38 圖4- 12. CSF演算法模型(修改自Zhang et al., 2016)。 39 圖4- 13. 相同地點於不同地形圖呈現之效果(陳振宇,2021)。 40 圖4- 14. 同一地點不同角度的光源製成的陰影圖。 40 圖4- 15. 紅色立體地圖製作概念(赤色立体地図: https://www.rrim.jp/)。 41 圖4- 16. CS立體地圖製作原理(戸田堅一郎,2012)。 42 圖5- 1. 數值地表模型圖。 43 圖5- 2. 正射影像結果圖。 44 圖5- 3. 控制點與檢核點誤差垂直誤差分布圖。 46 圖5- 4. 數值高程模型結果。 47 圖5- 5. DSM和去除了建物和樹木的DEM高程比較。 47 圖5- 6. 分層設色圖與陰影圖疊圖結果。 48 圖5- 7. 分層設色圖、陰影圖、等高線圖疊圖結果。 48 圖5- 8. 使用QGIS擴充程式製作出的CS立體地圖。 49 圖5- 9. 使用QGIS製作出的紅色立體地圖 49 圖5- 10. 結合陰影圖的3D地形圖,垂直放大倍率為8倍。 50 圖5- 11 透過紅色立體地圖所描繪出的階地邊界。 51 圖5- 12. QGIS擴充程式Terrain Profile Plugin應用範例。 51 圖5- 13. 頭前溪河階階面測繪結果圖。 52 圖5- 14. 頭前溪河階階面傾向圖。 52 圖5- 15. 3D地形圖結果與河階測繪結果疊圖。 53 圖5- 16. 頭前溪河階橫剖面位置圖。 54 圖5- 17. 河階橫剖面線結果圖。 55 圖5- 18. 河階縱剖面線分布圖。 56 圖5- 19. 河階縱剖面線結果圖。 57 圖5- 20. 測繪斷層所在位置圖。 58 圖5- 21. 四條剖面線與震測剖面線。 59 圖5- 22. 震測剖面位置(圖5-20之紅線)的地下構造(Chiu, 1971)和地表地形。 59 圖5- 23. 青草湖背斜剖面線結果。 60 圖5- 24. 青草湖背斜測繪位置圖。 61 圖5- 25. 小尺度地形剖面線分布圖。 62 圖5- 26. 小尺度地形剖面線。 62 圖6- 1. 5公尺(上)、30公尺(中)與SfM產製之1公尺(下)DEM比較圖。 64 圖6- 2. 頭前溪南岸河階地區的河階和構造分布結果圖。 65 圖6- 3. 歷史航照解析度示意圖(影像編號:62-0.17-0008,拍攝於民國62年10月24日)。 66 圖6- 4. SfM與歷史影像產製的密點雲的來源影像數量。 66 圖6- 5. 歷史航照光線差異示意圖。 67 圖6- 6. 拼接錯誤的正射影像示意圖。 68 圖6- 7. 連接點設立示意圖。 68 圖6- 8. 具有光線差異的歷史航照製成正射影像。 69 圖6- 9. 連接點設置分布圖。 69 圖6- 10. 地面控制點設置限制區。 70 圖6- 11. 地面控制點設置限制案例。 71 圖6- 12. GCP02設置範例。 72 圖6- 13. 頭前溪河階與前人比較差異處。 73 圖6- 14. 受到斷層截切的河階地形演育示意圖。 74 圖6- 15. 頭前溪河階相關定年結果。 74 圖6- 16. 頭前溪河階示意圖。 77 圖6- 17. 河谷分布圖。 77 圖6- 18. 河階與河谷分布圖。 78 表1- 1. 活動斷層反映的地形構造與其特徵(石再添,1982)。 14 表4- 1. 地面控制點(GCP)座標。 35 表4- 2. 檢核點(CP)座標 36 表5- 1. 控制點座標與誤差。 44 表5- 2. 檢核點座標與誤差。 45
dc.language.isozh-TW
dc.subject斷層崖zh_TW
dc.subject地形特徵測繪zh_TW
dc.subject地形特徵zh_TW
dc.subject河階zh_TW
dc.subjectStructure from Motionen
dc.subjectfault scarpen
dc.subjectfluvial terraceen
dc.subjectactive structure mapen
dc.subjectactive faulten
dc.title利用歷史航空影像與運動回復結構分析新竹地區構造地形zh_TW
dc.titleTectonic geomorphology analysis in Hsinchu area by using historical aerial photos and SfM techniqueen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐澔德(J-Bruce-H Shyu),詹瑜璋(Yu-Chang Chan),郭昱廷(Yu-Ting Kuo),何立德(Lih-Der Ho)
dc.subject.keyword河階,斷層崖,地形特徵,地形特徵測繪,zh_TW
dc.subject.keywordactive fault,active structure map,Structure from Motion,fluvial terrace,fault scarp,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202200730
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-05-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
dc.date.embargo-lift2022-07-05-
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
U0001-2704202223262300.pdf16.36 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved