請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85774完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀 | zh_TW |
| dc.contributor.advisor | Pen-Hsiu Chao | en |
| dc.contributor.author | 林俊宇 | zh_TW |
| dc.contributor.author | Chun-Yu Lin | en |
| dc.date.accessioned | 2023-03-19T23:23:57Z | - |
| dc.date.available | 2023-12-26 | - |
| dc.date.copyright | 2022-07-06 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Wagenseil, J.E. and R.P. Mecham, Vascular extracellular matrix and arterial mechanics. Physiological reviews, 2009. 89(3): p. 957-989.
2. Krüger-Genge, A., et al., Vascular Endothelial Cell Biology: An Update. International journal of molecular sciences, 2019. 20(18): p. 4411. 3. Aird, W.C., Phenotypic Heterogeneity of the Endothelium. 2007. 100(2): p. 158-173. 4. Nava, E. and S. Llorens, The Local Regulation of Vascular Function: From an Inside-Outside to an Outside-Inside Model. Frontiers in physiology, 2019. 10: p. 729-729. 5. Yau, J.W., H. Teoh, and S. Verma, Endothelial cell control of thrombosis. BMC Cardiovascular Disorders, 2015. 15(1): p. 130. 6. Mai, J., et al., An evolving new paradigm: endothelial cells – conditional innate immune cells. Journal of Hematology & Oncology, 2013. 6(1): p. 61. 7. Majesky, M.W., et al., The adventitia: a dynamic interface containing resident progenitor cells. Arteriosclerosis, thrombosis, and vascular biology, 2011. 31(7): p. 1530-1539. 8. Stenmark, K.R., et al., The adventitia: essential regulator of vascular wall structure and function. Annual review of physiology, 2013. 75: p. 23-47. 9. Dutzmann, J., et al., Sonic hedgehog-dependent activation of adventitial fibroblasts promotes neointima formation. Cardiovascular Research, 2017. 113(13): p. 1653-1663. 10. Campbell, K.A., et al., Lymphocytes and the Adventitial Immune Response in Atherosclerosis. 2012. 110(6): p. 889-900. 11. Li, X.-D., et al., Adventitial fibroblast-derived vascular endothelial growth factor promotes vasa vasorum-associated neointima formation and macrophage recruitment. Cardiovascular Research, 2019. 116(3): p. 708-720. 12. Mozafari, H., C. Zhou, and L. Gu, Mechanical contribution of vascular smooth muscle cells in the tunica media of artery. Nanotechnology Reviews, 2019. 8(1): p. 50-60. 13. O'Connell, M.K., et al., The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix biology : journal of the International Society for Matrix Biology, 2008. 27(3): p. 171-181. 14. Cocciolone, A.J., et al., Elastin, arterial mechanics, and cardiovascular disease. American journal of physiology. Heart and circulatory physiology, 2018. 315(2): p. H189-H205. 15. Yu, X., et al., Micromechanics of elastic lamellae: unravelling the role of structural inhomogeneity in multi-scale arterial mechanics. 2018. 15(147): p. 20180492. 16. Camasão, D.B. and D. Mantovani, The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Materials Today Bio, 2021. 10: p. 100106. 17. WOLINSKY, H. and S. GLAGOV, Structural Basis for the Static Mechanical Properties of the Aortic Media. 1964. 14(5): p. 400-413. 18. Shadwick, R.E., Mechanical design in arteries. J Exp Biol, 1999. 202(Pt 23): p. 3305-13. 19. Wen, Q. and P.A. Janmey, Effects of non-linearity on cell-ECM interactions. Experimental cell research, 2013. 319(16): p. 2481-2489. 20. Chistiakov, D.A., A.N. Orekhov, and Y.V. Bobryshev, Vascular smooth muscle cell in atherosclerosis. 2015. 214(1): p. 33-50. 21. Frismantiene, A., et al., Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cellular Signalling, 2018. 52: p. 48-64. 22. Rensen, S.S.M., P.A.F.M. Doevendans, and G.J.J.M. van Eys, Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation, 2007. 15(3): p. 100-108. 23. North, B.J. and D.A. Sinclair, The intersection between aging and cardiovascular disease. Circulation research, 2012. 110(8): p. 1097-1108. 24. Yazdanyar, A. and A.B. Newman, The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clinics in geriatric medicine, 2009. 25(4): p. 563-vii. 25. Cortes-Canteli, M. and C. Iadecola, Alzheimer’s Disease and Vascular Aging: JACC Focus Seminar. Journal of the American College of Cardiology, 2020. 75(8): p. 942-951. 26. El Assar, M., J. Angulo, and L. Rodríguez-Mañas, Oxidative stress and vascular inflammation in aging. Free Radical Biology and Medicine, 2013. 65: p. 380-401. 27. Tousoulis, D., et al., The role of nitric oxide on endothelial function. Curr Vasc Pharmacol, 2012. 10(1): p. 4-18. 28. Marín, C., et al., Endothelial aging associated with oxidative stress can be modulated by a healthy mediterranean diet. International journal of molecular sciences, 2013. 14(5): p. 8869-8889. 29. Khan, S.Y., et al., Premature senescence of endothelial cells upon chronic exposure to TNFα can be prevented by N-acetyl cysteine and plumericin. Scientific reports, 2017. 7: p. 39501-39501. 30. Izzo, C., et al., The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life (Basel, Switzerland), 2021. 11(1): p. 60. 31. Fhayli, W., et al., Rise and fall of elastic fibers from development to aging. Consequences on arterial structure-function and therapeutical perspectives. Matrix Biology, 2019. 84: p. 41-56. 32. Chirinos, J.A., et al., Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 2019. 74(9): p. 1237-1263. 33. Greenwald, S., Ageing of the conduit arteries. 2007. 211(2): p. 157-172. 34. McNulty, M., et al., Aging is associated with increased matrix metalloproteinase-2 activity in the human aorta*. American Journal of Hypertension, 2005. 18(4): p. 504-509. 35. Atkinson, J., Age-related medial elastocalcinosis in arteries: mechanisms, animal models, and physiological consequences. 2008. 105(5): p. 1643-1651. 36. Simionescu, A., K. Philips, and N. Vyavahare, Elastin-derived peptides and TGF-β1 induce osteogenic responses in smooth muscle cells. Biochemical and Biophysical Research Communications, 2005. 334(2): p. 524-532. 37. Humphrey, J.D. and G. Tellides, Central artery stiffness and thoracic aortopathy. Am J Physiol Heart Circ Physiol, 2019. 316(1): p. H169-h182. 38. Lacolley, P., et al., Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. 2017. 97(4): p. 1555-1617. 39. Nilsson, P.M., et al., Early vascular ageing in translation: from laboratory investigations to clinical applications in cardiovascular prevention. 2013. 31(8): p. 1517-1526. 40. Spinetti, G., et al., Rat Aortic MCP-1 and Its Receptor CCR2 Increase With Age and Alter Vascular Smooth Muscle Cell Function. 2004. 24(8): p. 1397-1402. 41. Wang, M., et al., A Local Proinflammatory Signalling Loop Facilitates Adverse Age-Associated Arterial Remodeling. PLOS ONE, 2011. 6(2): p. e16653. 42. Chen, Y., X. Zhao, and H. Wu, Arterial Stiffness. 2020. 40(5): p. 1078-1093. 43. Doran, A.C., N. Meller, and C.A. McNamara, Role of Smooth Muscle Cells in the Initiation and Early Progression of Atherosclerosis. 2008. 28(5): p. 812-819. 44. Allahverdian, S., C. Ortega, and G.A. Francis, Smooth Muscle Cell-Proteoglycan-Lipoprotein Interactions as Drivers of Atherosclerosis. Handbook of experimental pharmacology, 2020. 45. Wang, Y., et al., Smooth Muscle Cells Contribute the Majority of Foam Cells in ApoE (Apolipoprotein E)-Deficient Mouse Atherosclerosis. 2019. 39(5): p. 876-887. 46. Yap, C., et al., Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4). 2021. 41(11): p. 2693-2707. 47. Findeisen, H.M., F.K. Kahles, and D. Bruemmer, Epigenetic Regulation of Vascular Smooth Muscle Cell Function in Atherosclerosis. Current Atherosclerosis Reports, 2013. 15(5): p. 319. 48. McDonald, O.G., et al., Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. The Journal of clinical investigation, 2006. 116(1): p. 36-48. 49. Liu, Y., et al., Kruppel-like Factor 4 Abrogates Myocardin-induced Activation of Smooth Muscle Gene Expression*. Journal of Biological Chemistry, 2005. 280(10): p. 9719-9727. 50. Liu, R., K.L. Leslie, and K.A. Martin, Epigenetic regulation of smooth muscle cell plasticity. Biochimica et biophysica acta, 2015. 1849(4): p. 448-453. 51. Jeong, K., et al., FAK Activation Promotes SMC Dedifferentiation via Increased DNA Methylation in Contractile Genes. 2021. 129(12): p. e215-e233. 52. Harman, J.L., et al., Epigenetic Regulation of Vascular Smooth Muscle Cells by Histone H3 Lysine 9 Dimethylation Attenuates Target Gene-Induction by Inflammatory Signaling. 2019. 39(11): p. 2289-2302. 53. Stegemann, J.P., H. Hong, and R.M. Nerem, Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. 2005. 98(6): p. 2321-2327. 54. Chang, S., et al., Phenotypic modulation of primary vascular smooth muscle cells by short-term culture on micropatterned substrate. PloS one, 2014. 9(2): p. e88089-e88089. 55. Winkler, J., et al., Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications, 2020. 11(1): p. 5120. 56. Thyberg, J. and A. Hultgårdh-Nilsson, Fibronectin and the basement membrane components laminin and collagen type IV influence the phenotypic properties of subcultured rat aortic smooth muscle cells differently. Cell and Tissue Research, 1994. 276(2): p. 263-271. 57. Sazonova, O.V., et al., Extracellular matrix presentation modulates vascular smooth muscle cell mechanotransduction. Matrix Biology, 2015. 41: p. 36-43. 58. Brooke, B.S., A. Bayes-Genis, and D.Y. Li, New Insights into Elastin and Vascular Disease. Trends in Cardiovascular Medicine, 2003. 13(5): p. 176-181. 59. Brown, X.Q., et al., Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: implications for atherosclerosis. Journal of cellular physiology, 2010. 225(1): p. 115-122. 60. Xie, S.-A., et al., Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: Role of DNA methyltransferase 1. Biomaterials, 2018. 155: p. 203-216. 61. Thakar, R.G., et al., Regulation of vascular smooth muscle cells by micropatterning. Biochemical and Biophysical Research Communications, 2003. 307(4): p. 883-890. 62. Olive, M., et al., Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arteriosclerosis, thrombosis, and vascular biology, 2010. 30(11): p. 2301-2309. 63. Hamczyk, M.R., L. del Campo, and V. Andrés, Aging in the Cardiovascular System: Lessons from Hutchinson-Gilford Progeria Syndrome. Annu Rev Physiol, 2018. 80: p. 27-48. 64. Scaffidi, P. and T. Misteli, Lamin A-dependent nuclear defects in human aging. Science (New York, N.Y.), 2006. 312(5776): p. 1059-1063. 65. Del Campo, L., et al., Vascular Smooth Muscle Cell-Specific Progerin Expression Provokes Contractile Impairment in a Mouse Model of Hutchinson-Gilford Progeria Syndrome that Is Ameliorated by Nitrite Treatment. Cells, 2020. 9(3): p. 656. 66. Hamczyk, M.R. and V. Andrés, Vascular smooth muscle cell loss underpins the accelerated atherosclerosis in Hutchinson-Gilford progeria syndrome. Nucleus (Austin, Tex.), 2019. 10(1): p. 28-34. 67. Dahl, K.N., et al., Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(27): p. 10271-10276. 68. Vidak, S. and R. Foisner, Molecular insights into the premature aging disease progeria. Histochem Cell Biol, 2016. 145(4): p. 401-17. 69. McCord, R.P., et al., Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome research, 2013. 23(2): p. 260-269. 70. Osmanagic-Myers, S. and R. Foisner, The structural and gene expression hypotheses in laminopathic diseases—not so different after all. 2019. 30(15): p. 1786-1790. 71. Wang, X., B. Ding, and B. Li, Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 2013. 16(6): p. 229-241. 72. Zhang, Q., et al., Biofabrication of tissue engineering vascular systems. 2021. 5(2): p. 021507. 73. Jun, I., et al., Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. International journal of molecular sciences, 2018. 19(3): p. 745. 74. Reid, J.A., A. McDonald, and A. Callanan, Electrospun fibre diameter and its effects on vascular smooth muscle cells. Journal of materials science. Materials in medicine, 2021. 32(10): p. 131-131. 75. Yi, B., et al., Stiffness of Aligned Fibers Regulates the Phenotypic Expression of Vascular Smooth Muscle Cells. ACS Applied Materials & Interfaces, 2019. 11(7): p. 6867-6880. 76. Au - Ernst, O. and T. Au - Zor, Linearization of the Bradford Protein Assay. JoVE, 2010(38): p. e1918. 77. van Varik, B.J., et al., Mechanisms of arterial remodeling: lessons from genetic diseases. Frontiers in genetics, 2012. 3: p. 290-290. 78. Benedicto, I., B. Dorado, and V. Andrés, Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models. Cells, 2021. 10(5): p. 1157. 79. Goldman, R.D., et al., Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. 2004. 101(24): p. 8963-8968. 80. Holzapfel, G.A. and R.W. Ogden, Biomechanical relevance of the microstructure in artery walls with a focus on passive and active components. 2018. 315(3): p. H540-H549. 81. Morin, C., W. Krasny, and S. Avril, Multiscale Mechanical Behavior of Large Arteries. 2017. 82. Pai, A., et al., Elastin degradation and vascular smooth muscle cell phenotype change precede cell loss and arterial medial calcification in a uremic mouse model of chronic kidney disease. The American journal of pathology, 2011. 178(2): p. 764-773. 83. Wang, L., et al., Cartilage Oligomeric Matrix Protein Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells by Interacting With α<sub>7</sub>β<sub>1</sub> Integrin. 2010. 106(3): p. 514-525. 84. Bono, N., et al., Unraveling the role of mechanical stimulation on smooth muscle cells: A comparative study between 2D and 3D models. 2016. 113(10): p. 2254-2263. 85. Varga, R., et al., Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson–Gilford progeria syndrome. 2006. 103(9): p. 3250-3255. 86. Coll-Bonfill, N., et al., Progerin triggers a phenotypic switch in vascular smooth muscle cells that causes replication stress and an aging-associated secretory signature. bioRxiv, 2022: p. 2022.02.05.479232. 87. Verstraeten, V.L.R.M., et al., Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors. Aging cell, 2008. 7(3): p. 383-393. 88. Danielsson, B.E., et al., Lamin microaggregates lead to altered mechanotransmission in progerin-expressing cells. Nucleus, 2020. 11(1): p. 194-204. 89. Pitrez, P.R., et al., Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13. Nature Communications, 2020. 11(1): p. 4110. 90. Zhuge, Y., et al., Role of smooth muscle cells in Cardiovascular Disease. International journal of biological sciences, 2020. 16(14): p. 2741-2751. 91. Leclech, C. and C. Villard, Cellular and Subcellular Contact Guidance on Microfabricated Substrates. 2020. 8. 92. Huang, C.-H.J., Effect of Crimp Morphology on Cell Traction Force. 2019. 93. Huang, B.-L., Wavy Morphology Regulates Actin Structure and Phenotype in Vascular Smooth Muscle Cells. 2020. 94. Chen, C.-Y., et al., Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell, 2012. 149(3): p. 565-577. 95. Zhu, R., S. Antoku, and G.G. Gundersen, Centrifugal Displacement of Nuclei Reveals Multiple LINC Complex Mechanisms for Homeostatic Nuclear Positioning. Current biology : CB, 2017. 27(20): p. 3097-3110.e5. 96. Chang, W., et al., Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. 2019. 116(9): p. 3578-3583. 97. Chen, Z.-J., et al., Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies. Journal of Cell Science, 2014. 127(8): p. 1792-1804. 98. Hoffman, L.M., et al., Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes. Mol Biol Cell, 2020. 31(16): p. 1774-1787. 99. Porter, L., et al., SUN1/2 Are Essential for RhoA/ROCK-Regulated Actomyosin Activity in Isolated Vascular Smooth Muscle Cells. 2020. 9(1): p. 132. 100. Ye, G.J.C., A.P. Nesmith, and K.K. Parker, The role of mechanotransduction on vascular smooth muscle myocytes' [corrected] cytoskeleton and contractile function. Anatomical record (Hoboken, N.J. : 2007), 2014. 297(9): p. 1758-1769. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85774 | - |
| dc.description.abstract | 彈性動脈緩衝來自心搏的血壓波動以穩定提供器官血液,此彈性機械性質來自血管壁間質之環繞波浪狀微結構,而老化或受傷的動脈因彈性組織纖維結構與成分的改變導致硬度上升與功能受損。血管平滑肌細胞維持動脈結構與功能恆定,在成長、修復或疾病過程中,血管平滑肌細胞可從收縮型轉變為合成型以促進細胞增殖與胞外基質分泌,此表現型調控若失衡可能誘發血管修復不良與血管疾病惡化;目前雖有不少研究探討環境化學因子對血管平滑肌表現型的調控,不過組織纖維結構本身對血管平滑肌的影響卻尚未釐清。本研究以電紡絲技術製造仿生纖維,模擬健康動脈的捲曲或是老化受傷動脈的直線結構,以期釐清結構型態對細胞的調控。此外,在疾病動物模式發現表現早衰素的血管平滑肌細胞會加速血管的病變,因此我們也研究早衰素對血管平滑肌表現型的影響,並綜合性探討組織纖維排列與早衰素對血管平滑肌的調控。研究結果發現,捲曲纖維結構雖對正常血管平滑肌的效應微弱,但對帶有早衰素的血管平滑肌細胞則效果顯著。捲曲纖維結構除可緩衝血壓波動,本研究也指出其對血管平滑肌表現型調節的重要性;同時,探索調控血管恆定對了解血管疾病機轉高度重要,而我們的仿生纖維平台適用於發展血管疾病的模擬並有助於新藥的開發。 | zh_TW |
| dc.description.abstract | Elastic arteries smoothen the pulsatile blood flow from cardiac output to nourish the organs. Elastic fibers in arterial wall form circumferentially wavy microstructure, contributing to the mechanical functionality. In aged or injured arteries, elastic fibers undergo morphological and compositional changes, resulting in loss of tissue function. In the arterial wall, contractile vascular smooth muscle cells (VSMCs) maintain the mechanical functionality of the tissue. During vessel growth, repair, or pathogenesis, VSMCs become proliferative and synthesize abundant matrix components, known as the synthetic phenotype. Imbalanced VSMC plasticity induces adverse arterial remodeling and progression of vascular diseases. Environmental cues regulate phenotypic flexibility of VSMC, but the roles of matrix organization remain largely unknown. To address the influence of fiber structure on VSMC phenotype, we established VSMC culture in straight or wavy scaffold, which structurally mimics the aged/injured or healthy arteries. Additionally, we used progerin-expressing VSMCs, which drive vascular alternation in disease model animals, to investigate progerin and topography interaction. We found that while wavy topography slightly promoted contractile phenotype of wild-type (WT) VSMC, the effect was more robust in progerin-expressing VSMC. Our study indicated that wavy fiber structure played significant roles in regulating VSMC phenotype besides its mechanical contribution. Identifying regulatory factors involved in arterial homeostasis will help uncover mechanism of vascular pathology, and our biomimetic scaffold offers a relevant platform for disease modeling as well as new drug discovery. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:23:57Z (GMT). No. of bitstreams: 1 U0001-0205202214240000.pdf: 4223535 bytes, checksum: 8c08f37459c67392866cff9caad8e062 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III Contents IV List of Figures VI Chapter 1 Introduction 1 1.1 Arterial structure and function 1 1.1.1 Tunica Intima 1 1.1.2 Tunica Adventitia 1 1.1.3 Tunica Media 1 1.2 Vascular aging 2 1.1.4 Endothelial dysfunction 2 1.1.5 Arterial stiffening 2 1.3 Pathogenic roles of VSMC plasticity 3 1.4 Molecular mechanism of VSMC phenotype regulation 3 1.5 Microenvironmental regulation of VSMC phenotype 4 1.6 Accelerated vascular aging model: Hutchinson-Gilford progeria syndrome 4 1.7 Vascular tissue engineering 5 1.8 Aims of study 5 Chapter 2 Material and methods 7 2.1 Fabrication of electrospun scaffold 7 2.2 Mechanical and structure characterization 7 2.3 Scaffold sterilization and coating 7 2.4 Mouse aortic vascular smooth muscle cells (VSMCs) isolation and explant culture 7 2.5 Cell culture 8 2.6 AlamarBlue assay 8 2.7 Immunofluorescence staining 9 2.8 Microscopy 9 2.9 Fluorescent image analysis 9 2.10 RNA extraction 10 2.11 cDNA synthesis and Quantitative Polymerase Chain Reaction (qPCR) 10 2.12 Western blot 10 2.13 Statistics 11 Chapter 3 Results 13 3.1 Establish primary VSMC culture and phenotype characterization 13 3.2 Characterization of biomimetic fibrous scaffolds and cell morphology 14 3.3 Phenotypic assessment: VSMC Proliferation 15 3.4 Phenotypic assessment: Gene expression profile 16 3.5 Phenotypic assessment: Immuno-characterization 17 3.6 Progerin induction in VSMCs 18 3.7 Phenotypic characterization of progerin-positive cells 19 3.8 Effect of progerin expression on VSMC proliferation in scaffold cultures 20 3.9 Effect of progerin expression on VSMC gene and protein expression in scaffold cultures 21 Chapter 4 Discussion 24 References 27 | - |
| dc.language.iso | en | - |
| dc.subject | 仿生纖維平台 | zh_TW |
| dc.subject | 微結構 | zh_TW |
| dc.subject | 早衰素 | zh_TW |
| dc.subject | 仿生纖維平台 | zh_TW |
| dc.subject | 早衰素 | zh_TW |
| dc.subject | 血管平滑肌表現型多元性 | zh_TW |
| dc.subject | 微結構 | zh_TW |
| dc.subject | 動脈 | zh_TW |
| dc.subject | 血管平滑肌表現型多元性 | zh_TW |
| dc.subject | 動脈 | zh_TW |
| dc.subject | artery | en |
| dc.subject | progerin | en |
| dc.subject | topography | en |
| dc.subject | biomimetic scaffold | en |
| dc.subject | VSMC plasticity | en |
| dc.subject | artery | en |
| dc.subject | microstructure | en |
| dc.subject | progerin | en |
| dc.subject | topography | en |
| dc.subject | biomimetic scaffold | en |
| dc.subject | VSMC plasticity | en |
| dc.subject | microstructure | en |
| dc.title | 波浪狀纖維結構促進早衰素表現血管平滑肌細胞收縮型 | zh_TW |
| dc.title | Wavy Fiber Structure Improves Contractile Phenotype of Progerin-expressing Vascular Smooth Muscle Cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 紀雅惠;郭柏齡 | zh_TW |
| dc.contributor.oralexamcommittee | Ya-Hui Chi;Po-Ling Kuo | en |
| dc.subject.keyword | 微結構,動脈,血管平滑肌表現型多元性,仿生纖維平台,早衰素, | zh_TW |
| dc.subject.keyword | microstructure,artery,VSMC plasticity,biomimetic scaffold,topography,progerin, | en |
| dc.relation.page | 33 | - |
| dc.identifier.doi | 10.6342/NTU202200741 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-05-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2024-03-22 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 4.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
