請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85767完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳卉瑄(Hui-Hsuan Chen) | |
| dc.contributor.author | Hao-Yu Chiu | en |
| dc.contributor.author | 邱皓瑜 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:23:45Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-05-12 | |
| dc.identifier.citation | Ando, R., N. Takeda, and T. Yamashita (2012), Propagation dynamics of seismic and aseismic slip governed by fault heterogeneity and Newtonian rheology, J. Geophys. Res., 117, B11308, doi:10.1029/2012JB009532. Annoura, S., K. Obara, and T. Maeda (2016), Total energy of deep low-frequency tremor in the Nankai subduction zone, southwest Japan, Geophys. Res. Lett., 43, 2562–2567, doi:10.1002/2016GL067780. Beroza, G. C. & Ide, S. (2011), Slow earthquakes and nonvolcanic tremor. Annu. Rev.Earth Planet. Sci. 39, 271–296. Brudzinski, M.R. and Allen, R.M. (2007), Segmentation in episodic tremor and slip all along Cascadia. Geology, 35(10): 907-910. Chuang, L. Y., Chen, K. H., Wech, A., Byrne, T., & Peng, W. (2014), Ambient tremors in a collisional orogenic belt. Geophysical Research Letters, 41, 1485–1491. https://doi.org/10.1002/2014GL059476. Fang, L., Zhao, H., Wang, P., Yu, M., Yan, J., Cheng, W., & Chen, P. (2015), Feature selection method based on mutual information and class separability for dimension reduction in multidimensional time series for clinical data. Biomedical Signal Processing and Control, 21, 82–89. https://doi.org/10.1016/j.bspc.2015.05.011. Fisher, R.A. (1936), The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7, 179-188. http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x. Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio (2016), Deep Learning, Vol. 1, MIT Press, Cambridge, Massachusetts. Hibert, C., Malet, J.-P., Bourrier, F., Provost, F., Berger, F., Bornemann, P., et al. (2017), Single-block rockfall dynamics inferred from seismic signal analysis. Earth Surface Dynamics Discussions, 5, 1–15. DOI: 10.5194/esurf-2016-64. Hirose, T., Y. Hiramatsu, and K. Obara (2010), Characteristics of short‐term slow slip events estimated from deep low‐frequency tremors in Shikoku, Japan, J. Geophys. Res., 115, B10304, doi:10.1029/2010JB007608. Hirose, H., Asano, Y., Obara, K., Kimura, T., Matsuzawa, T., Tanaka, S., & Maeda, T. (2010), Slow Earthquakes Linked Along Dip in the Nankai Subduction Zone. Science, 330, 1502 - 1502. Ide, S., D. R. Shelly, and G. C. Beroza (2007), The mechanism of deep low frequency earthquakes: further evidence that deep non‐volcanic tremor is generated by shear slip on the plate interface, Geophys. Res. Lett. 34, L03308, doi:10.1029/2006GL028890. Ji, Y., S. Yoshioka, and T. Matsumoto (2016), Three-dimensional numerical modeling of temperature and mantle flow fields associated with subduction of the Philippine Sea plate, southwest Japan, J. Geophys. Res. Solid Earth, 121, 4458–4482, doi:10.1002/2016JB012912. Jordan, M. I., and T. M. Mitchell (2015), Machine learning: Trends, perspectives, and prospects, Science 349, no. 6245, 255–260. Kano, M., Kato, A., Ando, R., & Obara, K. (2018), Strength of tremor patches along deep transition zone of a megathrust. Scientific Reports, 8(1), 3655. https://doi.org/10.1038/s41598-018- 22048-8. Kita, S., and M. Matsubara (2016), Seismic attenuation structure associated with episodic tremor and slip zone beneath Shikoku and the Kii peninsula, southwestern Japan, in the Nankai subduction zone, J. Geophys. Res. Solid Earth, 121, 1962–1982, doi:10.1002/ 2015JB012493. Kong, Qingkai & Trugman, Daniel & Ross, Zachary & Bianco, Michael & Meade, Brendan & Gerstoft, Peter. (2018), Machine Learning in Seismology: Turning Data into Insights. Seismological Research Letters. 90. 10.1785/0220180259. Liu, Y.-H., Yeh, T.-C., Chen, K. H., Chen, Y., Yen, Y.-Y., & Yen, H.-Y. (2019), Investigation of single-station classification for short tectonic tremor in Taiwan. Journal of Geophysical Research: Solid Earth, 124. doi.org/10.1029/2019JB017866. Miyazawa M, Mori J (2006), Evidence suggesting fluid flow beneath Japan due to. periodic seismic triggering from the 2004 Sumatra-Andaman earthquake. Geophys Res Lett 33:L05303. Murphy, K. P. (2012), Machine Learning: A Probabilistic Perspective, MIT Press, Cambridge, Massachusetts. Nadeau RM, Dolenc D. (2005), Nonvolcanic tremors deep beneath the San Andreas Fault. Science. Jan 21;307(5708):389. doi: 10.1126/science.1107142. Epub 2004 Dec 9. PMID: 15591163. Nakata, R., Suda, N. & Tsuruoka, H. (2008), Non-volcanic tremor resulting from the combined effect of Earth tides and slow slip events. Nature Geosci 1, 676–678. https://doi.org/10.1038/ngeo288. Nishimura, T., T. Matsuzawa, and K. Obara (2013), Detection of short-term slow slip events along the NankaiTrough, southwest Japan, using GNSS data,J. Geophys. Res. Solid Earth,118, 3112–3125, doi:10.1002/jgrb.50222. Obara, K. (2002), Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296(5573), 1679–1681. https://doi.org/10.1126/science.1070378. Obara, K. (2010), Phenomenology of deep slow earthquake family in southwest Japan: Spatiotemporal characteristics and segmentation, J. Geophys. Res., 115, B00A25, doi:10.1029/2008JB006048. Obara, K., Matsuzawa, T., Tanaka, S. and Maeda, T. (2012), Depth-dependent mode of tremor migration beneath Kii Peninsula, Nankai subduc- tion zone. Geophys. Res. Lett. 39, L10308. Obara K. (2020), Characteristic activities of slow earthquakes in Japan. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 96(7), 297–315. https://doi.org/10.2183/pjab.96.022. Provost, F., Hibert, C., & Malet, J.-P. (2016), Automatic classification of endogenous landslide seismicity using the Random Forest super-vised classifier. Geophysical Research Letters, 44, 113–120. https://doi.org/10.1002/2016GL070709. Rogers, G. and Dragert, H., (2003), Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip. Science, 300(5627): 1942-1943. Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. J. Humphreys, and P. A. Johnson (2017), Machine learning predicts laboratory earthquakes, Geophys. Res. Lett. 44, no. 18, 9276–9282. Ruiz, S. a. M., M. and Fuenzalida, A. and Ruiz, J. and Leyton, F. and Grandin, R. and Vi gny, C. and Madariaga, R. and Campos, J. (2014), Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science, 345(6201), 1165–1169. doi:10.1126/science.1256074. Schmidt, M. E., and A. L. Grunder (2006), Segmentation of the Cascade arc based on compositional and Sr and Nd isotopic variations in primitive volcanic rocks, Eos (Transactions, American Geophysical Union), v. 87, abstract. T53G–02. Shelly, D. R. (2009), Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor. Geophysical Research Letters, 36(17). doi:10.1029/2009gl039589. Shelly, D. (2015), Complexity of the deep San Andreas Fault zone defined by cascading tremor. Nature Geosci 8, 145–151. https://doi.org/10.1038/ngeo2335. Supino, Mariano & Shapiro, Nikolai & Vilotte, Jean-Pierre & Poiata, Natalia & Obara, Kazushige. (2021), Tectonic low-frequency earthquakes in Shikoku, Japan: source, scaling, size distribution and observational limits. 10.1002/essoar.10506594.1. Q. Gu, Z. Li, and J. Han. (2012), Generalized Fisher score for feature selection. arXiv preprint arXiv:1202.3725. Witten, I. H., E. Frank, M. A. Hall, and C. J. Pal (2016), Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, Burlington, Massachusetts. Whitney, A. W. (1971), A direct method of nonparametric measurement selection. IEEE Trans actions on Computers, 100(9), 11001103. 吳郁柔(2020),利用中央山脈中段地震網尋找新的長微震震源。國立臺灣師範大學地球科學系碩士論文,共75頁。 吳宇翔(2021),基於單類別分類之構造長微震偵測架構設計。國立臺灣師範大學地球科學系碩士論文,共81頁。 莊育菱(2012),台灣非火山長微震半自動化偵測系統。國立臺灣師範大學地球科學系碩士論文,共93頁。 葉庭禎(2011),臺灣地震與長微震之動態誘發。國立臺灣大學理學院地質科學研究所碩士論文,共102頁。 戴心如(2016),臺灣非火山長微震之活動特徵及可能之孕震構造和機制。國立臺灣師範大學地球科學系碩士論文,共80頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85767 | - |
| dc.description.abstract | 構造長微震為慢地震族群中的一個類別,此特殊震動訊號貌似雜訊,其特性為(1)振幅微弱,無明顯體波波相;(2)主頻落在2至8 Hz之間;(3)能量持續時間長,從數分鐘到數天不等;並且(4)在相距數十公里的測站具有相近的到時,若不以多個測站之波形判斷,則很難將長微震與雜訊區分。本研究將探討應用機器學習方法於自動化分類,對於跨區段的長微震訊號是否可行?而分類後對於訊號的本質,是否能夠進一步得到能反映這些訊號的物理背景?著重對於訊號本質並且配合特徵及物理意義討論,相較一般觀測數值之計算,預期得知蘊藏在訊號中的細節。使用監督式學習(supervised learning),應用k最近鄰居法(k-NN)、向前特徵選取法(sequential forward feature selection),並且配合費雪分數(Fisher score)的計算以整合有效特徵。由於日本四國長微震之時空分佈特徵清晰、分段明顯,本研究訓練分類器以區分四國四個不同子區域(A-D)的長微震訊號。選用Annoura et al. (2016) 目錄從 2014 年 6 月 1 日到 2015 年 3 月 31 日的事件,將目錄中不同子區域的長微震進行波形切段,時間長度為 60 秒,得到10000至31000 筆多筆資料,以形成數據集合。使用每筆標籤化之60 秒數據,針對 29 個地震特徵應用 k-NN 分類器來研究其分類性能。除了針對訊號於不同震源區傳遞至上方測站接收,也固定了單一震源區探討傳遞至上方測站以及其他區段測站之訊號,將不同區段的訊號特性分類比較,進行了5個試驗,共18個子測試,高分類率(90 % 以上)的結果表明應用k-NN 來區分不同區段長微震的潛力。利用費雪判別準則綜合P值((p-value)檢定,發現波形資料在自相關函數以及離散傅立葉轉換計算後之特徵具有較高的費雪分數,在分離不同區段長微震中擔任著重要的角色。此外,由於長微震發生的物理機制與構造環境不同,而高分離性的特徵也能進一步加入解釋及探討。本研究最終成功地分離了四國不同區段的長微震訊號,並篩選出於不同子區域有效的震源差異分類特徵,表示了應用機器學習區分震源特性的可能。 | zh_TW |
| dc.description.abstract | Tectonic tremor is long-lasting (several minutes to days) and noise-like seismic signal with the dominant frequency of 2 to 8 Hz. It is generally identified by waveform similarity in the envelope with nearly the same arrival at different stations. Without a display of waveforms from multiple stations, discriminating tremors from noises is difficult. How much the tremor signals can tell us about the source properties and regional differences in physical environments that host tremors? Applying machine learning, how can we demonstrate the segmentation based on signal characteristics? To answer these questions, this study attempts to explore the signal characteristics of tremors in areas that are naturally separable and different from each other. We used the trained classifier for discriminating tremors in four different sub-areas of Shikoku (A-D) due to the clear segmentation of tremor distribution and characteristics in space and time (Kano et al., 2018). The tremor events in the Shikoku region of southwest Japan were from the catalog by Annoura et al. (2016) from 1 June in 2014 to 31 March in 2015. To prepare the labeled events composed of the largest number of data, tremors in the catalogs were segmented into 10000-31000 signals with a length of 60 seconds. Using the 60-s-labeled data, we applied k-NN classifier on 29 seismic features to investigate the classification performance. Based on pairwise comparisons among a set of tremors and stations at these sub-areas, the high classification rate (higher than 90 %) suggests the potential of applying k-NN on tremor discrimination in different areas. Under Fisher's class separability criterion, we found that the optimal features with high Fisher scores on the spectral contents and energy concentration play important roles in separating the tremor signals. The high separability is somewhat expected due to the different physical and tectonic environments for tremor generation. In this study, we successfully separated the tremors in the distinct segments of Shikoku. Investigating the variations in signal characteristics reveals the possibility of differentiating the source properties by using machine learning. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:23:45Z (GMT). No. of bitstreams: 1 U0001-0805202217291700.pdf: 9888623 bytes, checksum: 07eba22282913165b9d232aa671ab1f4 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員會審定書 I 致謝 II 中文摘要 III ABSTRACT IV 目錄 V 圖目錄 VIII 表目錄 XI 第 1 章 緒論 1 第 2 章 前人研究 2 2.1 日本慢地震之特性 2 2 2.2 日本長微震之特徵 7 2.2.1 波形特性 7 2.2.2 與慢滑移事件之同步關係 8 2.2.3 可能的發震機制 9 2.3 日本四國基於長微震特徵之分段 10 2.4 機器學習方法應用於地震訊號之研究 15 2.5 本研究欲解決之問題 18 第 3 章 研究方法 19 3.1 研究區域與資料 19 3.1.1 日本四國之分段 19 3.1.2 長微震目錄 21 3.1.3 資料標籤 25 3.2 特徵抽取 26 3.3 分類器與效能評估 34 3.3.1 分類器選擇:k-最近鄰居法 34 3.3.2 效能評估:混淆矩陣 36 3.4 選取有效特徵 37 3.4.1 費雪判別準則 38 3.4.2 循序向前選取法 39 3.5 探討震源有效分類特徵之試驗 40 3.5.1 試驗設計 41 3.5.2 以 p-value 檢定有效特徵 41 第 4 章 研究結果 45 4.1 不同區段之二元分類率比較 45 4.1.1 不同震源區傳遞至上方測站—試驗一 45 4.1.2 固定震源區考慮跨區段效應—試驗二~五 47 4.2 基於費雪分數排名之有效特徵 49 4.2.1 不同震源區傳遞至上方測站—試驗一 50 4.2.2 固定震源區考慮跨區段效應—試驗二~五 54 4.3 不同區段共同特徵表現 59 4.4 震源特徵之有效分離 61 4.4.1 利用p值檢驗綜合費雪分數給定特徵門檻 61 4.4.2 三角比對驗證提取震源差異特徵 63 4.5 有效特徵之意義 67 4.5.1 時間域之有效特徵(特徵9、10、11號) 68 4.5.2 頻率內涵有效特徵(特徵13、16號) 71 4.5.3 時頻譜相關特徵(特徵24、25) 74 第 5 章 討論 78 5.1 新增特徵以測試分離效能 78 5.1.1 延伸相關特徵之檢驗 78 5.1.2 與訊號持續時間相關特徵之檢驗 83 5.2 有效特徵與地質特性之可能解釋 86 5.2.1 自相關函數與構造衰減之關聯 86 5.2.2 長微震物理化學機制:四國不同分區之異同 89 第 6 章 結論 92 參考文獻 93 附錄一、三角比對驗證之細節 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 四國 | zh_TW |
| dc.subject | 特徵 | zh_TW |
| dc.subject | 構造長微震 | zh_TW |
| dc.subject | 分類率 | zh_TW |
| dc.subject | k-最近鄰居法 | zh_TW |
| dc.subject | 費雪分數 | zh_TW |
| dc.subject | Fisher's class separability criterion | en |
| dc.subject | tectonic tremors | en |
| dc.subject | Shikoku | en |
| dc.subject | features | en |
| dc.subject | classification rate | en |
| dc.subject | k-NN | en |
| dc.title | 應用機器學習方法於日本四國長微震訊號之分段特徵 | zh_TW |
| dc.title | Segmentation characteristics of tectonic tremors in Shikoku, Japan using machine learning approaches | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 胡植慶(Jyr-Ching Hu) | |
| dc.contributor.oralexamcommittee | 洪淑蕙(Shu-Huei Hung),劉益宏(Yi-Hung Liu) | |
| dc.subject.keyword | 構造長微震,四國,特徵,分類率,k-最近鄰居法,費雪分數, | zh_TW |
| dc.subject.keyword | tectonic tremors,Shikoku,features,classification rate,k-NN,Fisher's class separability criterion, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202200753 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-05-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0805202217291700.pdf | 9.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
