請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85766完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許雅儒(Ya-Ju Hsu) | |
| dc.contributor.author | Yan-Hong Chen | en |
| dc.contributor.author | 陳彥宏 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:23:43Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-05-12 | |
| dc.identifier.citation | A. Gualandi, E. Serpelloni & M. E. Belardinelli (2015). Blind source separation problem in GPS time series. Journal of Geodesy, 90, 323–341. doi: 10.1007/s00190-015-0875-4 Alaa Tharwat (2018). Independent component analysis: An introduction. Faculty of Computer Science and Engineering. Applied Computing and Informatics, 17(2), 222-249. doi: 10.1016/j.aci.2018.08.006. Boris Podobnik, Zhi-Qiang Jiang, Wei-Xing Zhou, & H. Eugene Stanley (2011). Statistical tests for power-law cross-correlated processes. Physical Review E, 84(6). doi: 10.1103/PhysRevE.84.066118 Christophe Voisin, Stéphane Garambois, Chris Massey, and Romain Brossier (2016). Seismic noise monitoring of the water table in a deep-seated, slow-moving landslide. Interpretation, 4(3), 67-76. doi: 10.1190/INT-2016-0010.1 Dominic Langlois, Sylvain Chartier & Dominique Gosselin (2010). An Introduction to Independent Component Analysis: InfoMax and FastICA algorithms. Tutorials in Quantitative Methods for Psychology, 6(1), 31-38. doi: 10.20982/tqmp.06.1.p031 E. Serpelloni, F. Pintori, A. Gualandi, E. Scoccimarro, A. Cavaliere, L. Anderlini1, M. E. Belardinelli & M. Todesco5 (2017). Hydrologically Induced Karst Deformation: Insights from GPS Measurements in the Adria-Eurasia Plate Boundary Zone. Journal of Geophysical Research: Solid Earth, 123(5), 4413–4430. doi: 10.1002/2017JB015252. Jonathan M. Lilly. (2016). Element analysis: a wavelet-based method for analysing time-localized events in noisy time series. The Royal Society Publishing, 473(2200). doi: 10.1098/rspa.2016.0776. Jonathan M. Lilly & Sofia C. Olhede. (2009). Higher-order properties of analytic wavelets. IEEE Transactions on Signal Processing, 57 (1), 146–160. doi: 10.1109/TSP.2008.2007607. Jonathan M. Lilly & Sofia C. Olhede. (2012). Generalized Morse Wavelets as a Superfamily of Analytic Wavelets. IEEE Transactions on Signal Processing, 60 (11), 6036–6041. doi: 10.1109/TSP.2012.2210890. Keren Dai, Zhenhong Li, Qiang Xu, Roland Bürgmann, David G. Milledge, Roberto Tomás, Xuanmei Fan, Chaoying Zhao, Xiaojie Liu, Jianbing Peng, Qin Zhang, Zheng Wang, Tengteng Qu, Chaoyang He, Deren Li & Jingnan Liu (2020). Entering the Era of Earth Observation-Based Landslide Warning Systems. IEEE Geoscience and Remote Sensing Magazine, 8(1), 136-153. doi: 10.1109/MGRS.2019.2954395 Nikolaidis, R (2002). Observation of geodetic and seismic deformation with the Global Positioning System. Ph.D. dissertation thesis, 249pp., University of California, San Diego. N. Matsumoto, G. Kitagawa & E. A. Roeloffs. (2003). Hydrological response to earthquakes in the Haibara well, central Japan – I. Groundwater level changes revealed using state space decomposition of atmospheric pressure, rainfall and tidal responses. Geophys. J. Int, 155(3), 885–898. doi: 10.1111/j.1365-246X.2003.02103.x Timothy Clements, Marine A. Denolle (2018). Tracking Groundwater Levels Using the Ambient Seismic Field. Geographical Research Letters, 45(13), 6459-6465. doi: 10.1029/2018GL077706, W. Christopher Lang & Kyle Forinash (1998). Time-frequency analysis with the continuous wavelet transform. American Journal of Physics, 66, 794-797. doi: 10.1119/1.18959 Ya-Ju Hsu, Rou-Fei Chen, Ching-Weei Lin, Horng-Yue Chen & Shui-Beih Yu. (2014). Seasonal, long-term, and short-term deformation in the Central Range of Taiwan induce by lanslides. Geology, 42(11), 991-994. doi: 10.1130/G35991.1. Ya-Ju Hsu, Rou-Fei Chen, Ching-Weei Lin, Horng-Yue Chen & Shui-Beih Yu. (2014). Supplementary materials for Seasonal, long-term, and short-term deformation in the Central Range of Taiwan induced by landslides. GSA Data Repository, 2014348. Jeff Hung,2018,R筆記-獨立成份分析(ICA)。檢自https://reurl.cc/Gdza6W 李璟芳、黃春銘、黃韋凱、陸安、林錫宏,2021。降雨誘發山崩動態警戒模式與調查技術研發應用(1/4)。經濟部中央地質調查所「山崩潛勢評估與觀測技術防災應用」計畫研究成果報告。 廖瑞堂、陳昭維、紀宗吉、林錫宏,2013。由台灣監測案例探討邊坡位移量之管理值。地工技術,No.136/2013.6,60-70頁。 林錫宏、紀宗吉、沈振勝,2010。廬山溫泉北坡岩體滑動的地質模式與監測。經濟部中央地質調查所98年度業務成果發表會手冊,8-9頁。 黃健政、李錦發、紀宗吉,2002。坡地防災技術及資料庫建置。經濟部中央地質調查所之出國報告提要,15-19頁。 經濟部中央地質調查所,1988。玉山國家公園關山地區地質調查~南橫公路地質潛在危險區的研究分析。內政部營建署玉山國家公園管理處委辦計畫報告。 陳鶴勳、徐森彥、陳柏安,2014。梨山地層滑動整治 斯拉茂再現風華。農政與農情第264期。 財團法人中興工程顧問社,2011。易淹水地區上游集水區地質調查及資料庫建置(第3期100年度): 集水區水文地質對坡地穩定性影響之調查評估計畫。中央地質調查所委辦計畫報告。 朱芳儀、吳亭燁、陳麒文,2019。氣候變遷資料應用於崩塌潛勢之評估。臺灣氣候變遷推估資訊與調適知識平台電子報026期。 饒瑞鈞,2018。精緻化坡地大規模崩塌調查、監測技術及潛勢與影響分析研究-以荖濃溪流域及廬山地區板岩帶為例-子計畫:利用單頻GPS連續站觀測分析深層崩塌變形機制。行政院科技部委辦計畫報告。 魏倫瑋、羅佳明、鄭添耀、鄭錦桐、冀樹勇,2012。深層崩塌之地貌特徵-以台灣南部地區為例。中興工程,第115期,35-43頁。 王國隆、林美聆、許雅儒、郭力維、郭志禹、陳建志、陳柔妃、陳宏宇、陳昭維、張國楨、黃信樺、謝佑明,2018。蘭台大規模崩塌潛勢示範區觀測科技整合研究計畫。行政院農業委員會水土保持局委辦計畫報告。 王國隆、林美聆、倪春發、陳建志、陳柔妃、陳宏宇、陳昭維、郭志禹、張國楨、許雅儒、黃信樺、謝佑明、林柏宏、李苡宣、李奕賢、陳璽安、蔡宜純,2019。蘭台大規模崩塌潛勢示範區觀測科技整合與分析期末報告書,行政院農業委員會水土保持局委辦計畫報告。 王國隆、林美聆、倪春發、陳建志、陳柔妃、陳宏宇、陳昭維、郭志禹、張國楨、許雅儒、黃信樺、謝佑明、林柏宏、李苡宣、李奕賢、陳德偉、陳璽安、鄒鄭翰、葉秀柏、詹雅馨、蔡宜純,2020。蘭台大規模崩塌潛勢示範區觀測科技整合與分析期末報告書,行政院農業委員會水土保持局委辦計畫報告。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85766 | - |
| dc.description.abstract | 宜蘭太平山蘭台苗圃地區為一大規模崩塌潛勢區,為了防止將來發生複合型災害,減少人員傷亡以及財物損失,近年來已開始執行觀測整合研究計畫,結合GNSS連續觀測站、地震站與光柵光纖孔隙水壓計等觀測系統,紀錄影響坡面穩定性之機制。根據GNSS座標時間序列與雨量站資料比對,坡面位移量與累積雨量具有高度相關性,並記錄到因乾濕季變化產生的重力滑移現象。在經濾波處理後的1-4 Hz地震表面波波速變化資料(dv/v)能觀察到乾季波速增加、濕季減慢的趨勢,可反映深層地層的構造特徵及水文變化情形。 本研究利用自迴歸模型、時頻圖、獨立成分分析等時間序列分析方法,了解GNSS、1-4 Hz dv/v(約反應深度100 m的波速變化)、深度60 m孔隙水壓及累積雨量的時間變化,並探討不同時間序列資料和水文現象在時間及空間上的相關性。此外,為了解大雨事件GNSS位移加速的時空歷程,本研究分析觸發滑動時的臨界降雨值、滑動持續時間、滑移量和降雨量的關係。因蘭台地區目前強降雨事件的資料紀錄過少,本研究也將南橫天池、塔塔加和玉山站GNSS觀測資料加入討論,分析強降雨發生時的坡體滑移特性。 地震波1-4 Hz dv/v和GNSS的自回歸模型都能成功以水文資料進行修正,其中dv/v和水文資料變化呈負相關,以雨量資料修正模型時,位於崩塌潛勢區的測站修正量較大,對雨量變化較敏感。在不同的資料變化間有時間延遲(time lag)情形,在降雨當天dv/v就會發生變化,水壓變化比降雨晚10至25天,GNSS約比水壓變化晚10至30天。 時頻圖觀測到GNSS、1-4 Hz dv/v、水壓和累積雨量資料皆有0.3年、0.65年和1年的週期變化,推斷是受到雨量週期變化的影響,根據年週期波形的相位差,降雨和dv/v的峰值約同時抵達,水壓變化比降雨晚30天,GNSS又比水壓變化晚了75天。 利用獨立成分分析並不容易歸納出1-4 Hz地震波速變化dv/v或GNSS各測站共有的特徵訊號,可能與蘭台地區複雜且局部的坡體構造狀況有關,各測站紀錄的變化量差異大,儀器斷電造成的資料缺失也是造成誤差的原因之一。 蘭台地區發生坡體快速滑動時的臨界降雨值約為300 mm,滑動情形在降雨停止的兩天內就會逐漸趨緩,總累積雨量和總滑移量成正比。根據塔塔加、南橫天池和玉山站的位移場,在累積雨量至少達700 mm以上的事件才能觀測到較明顯的滑移發生,約在降雨停止的兩天內就會逐漸趨緩,總累積雨量和總水平位移量呈高度正相關。從降雨和滑移關係上來看,蘭台地區降雨臨界值相較其他測站低且容易觸發坡面滑動,此外滑動量大小也較難以單場累積雨量大小來訂定,往後需將土體含水量和孔隙水壓等因素加入考慮。本研究提供宜蘭太平山蘭台苗圃地區不同時間序列在降雨過後的歷程,可作為將來山崩預警評估系統之參考。 | zh_TW |
| dc.description.abstract | Lan-Tai in the Taiping Mountain, Ilan is the potential area for the deep-seated landslides. To provide an understanding of sliding behavior over time, this study aims at analyzing data collected by earth science-based monitoring techniques, including the Global Navigation Satellite System (GNSS) and seismic noise interferometry, as well as rainfall and groundwater records. Comparing with the conventional engineering-based invasive approaches, our strategy provides continuous data across different spatiotemporal scales with a lower cost. By analyzing GNSS and rainfall time series, we find slope movements often occur when the rainfall intensity is above 300mm/day in Lan-tai. The seasonal variations in GNSS time series reflect not only the different rate of downslope movement during the dry and wet seasons but also the variability of annual water storage. Furthermore, the filtered 1-4 Hz seismic velocity change (dv/v) also records the annual cycle associated with hydrological storage change. To extract the spatiotemporal pattern of various observations during the heavy rainfall events, different methods for time series analysis are used, including the autoregression model, wavelet spectrogram and Independent Component Analysis (ICA). Results from the autoregression model suggests an immediately response between the daily rainfall and dv/v changes, following by the water pressure and GNSS changes about 10-25 days and 10-30 days, respectively, behind the peak daily rainfall. Computing the spectrograms of different data sets shows 0.3, 0.6 and 1-year periodicity, which are likely associated with the variation of rainfall intensity. The phase of peak annual cycle also shows invisible time lag between rainfall and dv/v, the peak water pressure lags about 30 days after rainfall, and the peak GNSS response lags 75 days behind maximum water pressure. In the Lan-tai area, the slope movement accelerates when the daily rainfall reaches 300 mm and ceases about two days later after the rain stops. Due to insufficient heavy rainfall events in Lan-tai, data collected at three continuous GNSS stations, TATA, TENC, and YUSN, located in the Central Range of Taiwan, are analyzed in this study as well. The deep-seated landslides at these sites accelerate when the cumulative rainfall exceeding 700 mm/day, larger than the rainfall threshold of landslide in Lan-tai. The variation of rainfall threshold in different regions suggest other factors contribute to landslides triggering such as geological, geomorphological, and climatic conditions. Delineating the role of different physical mechanisms remains challenging. The continuous monitoring and measurements using multiple observations can provide the background sate of landslide-prone areas, help to develop an early warning system, and eventually improve the risk assessment of landslide instability. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:23:43Z (GMT). No. of bitstreams: 1 U0001-0605202214071700.pdf: 8786107 bytes, checksum: c4160160449d004cc2d394ebe7c24c88 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 I 誌謝 II 摘要 III Abstract V 目錄 VII 圖目錄 X 表目錄 XIII 公式目錄 XIII 第一章 緒論 1 1.1 前人研究 1 1.2 研究動機和目的 3 第二章 研究區域及資料 4 2.1 研究區域 4 2.2 研究資料 7 2.2.1 全球導航衛星定位系統 8 2.2.2 環境地動噪訊震波解算 9 2.2.3 降雨量及孔隙水壓 10 第三章 研究方法 12 3.1 資料前處理 12 3.1.1 剔除資料離群值 12 3.1.2 資料補點 12 3.1.3 降雨變化曲線製作 13 3.2 由自回歸模型探討雨量及水壓在地表位移和地震波波速變化之影響 16 3.2.1 自回歸模型擬合計算 16 3.2.2 計算模型修正前後的殘差變化量 17 3.3 時頻圖分析 18 3.4 獨立成分分析 20 第四章 相關性模型結果與討論 22 4.1 由自回歸模型探討雨量及水壓在地表位移和地震波波速變化之影響 22 4.1.1 地震波dv/v雨量及水壓修正自回歸模型結果 22 4.1.2 GNSS雨量及水壓修正自回歸模型結果 26 4.1.3 小結 32 4.2 時頻圖分析 33 4.2.1 雨量和水壓資料時頻圖 33 4.2.2 地震波dv/v和GNSS時頻圖 35 4.2.2.1 年週期波形及峰值到達時間比較 36 4.2.2.2 其他週期結果和各時序資料的波形相關性 38 4.2.3 小結 40 4.3 獨立成分分析 41 4.3.1 地震波dv/v ICA特徵訊號分析結果 41 4.3.1.1 dv/v特徵訊號與測站資料的相關性 41 4.3.1.2 dv/v特徵訊號與水文資料的相關性 44 4.3.2 GNSS ICA特徵訊號分析結果 45 4.3.3 小結 45 4.4 資料綜整分析 46 4.5 時序資料預警模型建立 49 4.5.1 線性回歸模型評估及預警 49 4.5.2 降雨和水壓的相關性 50 第五章 強降雨事件期間地表位移趨勢分析 52 5.1 降雨事件地表快速滑移標準制定 54 5.2 蘭台山崩潛勢區地表位移趨勢分析 56 5.3 其他山崩潛勢區地表位移趨勢分析 62 5.3.1 塔塔加(TATA) 65 5.3.2 玉山(YUSN) 67 5.3.3 南橫天池(TENC) 69 5.4 蘭台與其他潛勢區滑移特性比較 71 第六章 結論 73 參考文獻 76 附錄: 蘭台GNSS時間序列資料 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 累積雨量 | zh_TW |
| dc.subject | 大規模崩塌潛勢區 | zh_TW |
| dc.subject | GNSS | zh_TW |
| dc.subject | 地震噪訊 | zh_TW |
| dc.subject | 時間序列分析 | zh_TW |
| dc.subject | 水壓 | zh_TW |
| dc.subject | pore water pressure | en |
| dc.subject | large scale landslide | en |
| dc.subject | time series analysis | en |
| dc.subject | GNSS | en |
| dc.subject | ambient seismic noise | en |
| dc.subject | cumulative rainfall | en |
| dc.title | 蘭台大規模崩塌潛勢區—觀測資料綜整分析 | zh_TW |
| dc.title | Monitoring slope movement for the Lan-Tai site with multiple data sets | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 胡植慶(Jyr-Ching Hu) | |
| dc.contributor.oralexamcommittee | 王國隆(Kuo-Lung Wang),張午龍(Wu-Lung Chang) | |
| dc.subject.keyword | 大規模崩塌潛勢區,時間序列分析,GNSS,地震噪訊,累積雨量,水壓, | zh_TW |
| dc.subject.keyword | large scale landslide,time series analysis,GNSS,ambient seismic noise,cumulative rainfall,pore water pressure, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU202200749 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-05-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0605202214071700.pdf | 8.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
