請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85730完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李宗徽(Tzong-Huei Lee) | |
| dc.contributor.author | Yuen-Sing Lee | en |
| dc.contributor.author | 李元新 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:22:40Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-06 | |
| dc.identifier.citation | 1. Ankisetty, S. and Slattery, M., Antibacterial secondary metabolites from the cave sponge Xestospongia sp.. Marine Drugs, 12. 10(5): p. 1037-1043. 2. Bao, J., He, F., Yu, J. H., Zhai, H. J., Cheng, Z. Q., Jiang, C. S., Zhang, Y. Y., Zhang, Y., Zhang, X. Y., Chen, G. Y., and Zhang, H., New chromones from a marine-derived fungus, Arthrinium sp., and their biological activity. Molecules, 2018. 23(8). 3. Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., and Prinsep, M. R., Marine natural products. Natural Product Reports, 2019. 36(1): p. 122-173. 4. Gao, S. S., Li, X. M., Du, F. Y., Li, C. S., Proksch, P., and Wang, B. G., Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Marine Drugs, 2010. 9(1): p. 59-70. 5. Heo, Y. M., Kim, K., Ryu, S. M., Kwon, S. L., Park, M. Y., Kang, J. E., Hong, J. H., Lim, Y. W., Kim, C., Kim, B. S., Lee, D., and Kim, J. J., Diversity and ecology of marine algicolous Arthrinium species as a source of bioactive natural products. Marine Drugs, 2018. 16(12): p. 508. 6. Lee, Y. J., Cho, Y., and Tran, H. N. K., Secondary metabolites from the marine sponges of the genus Petrosia: A literature review of 43 years of research. Marine Drugs, 2021. 19(3): p. 122. 7. Rusman, Y., Isolation of new secondary metabolites from sponge-associated and plant-derived endophytic fungi. 2007, Cuvillier Verlag. Gottingen, Germany. 8. Zhang, J. Y., Tao, L. Y., Liang, Y. J., Chen, L. M., Mi, Y. J., Zheng, L. S., Wang, F., She, Z. G., Lin, Y. C., To, K. K., and Fu, L. W., Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Marine Drugs, 2010. 8(4): p. 1469-1481. 9. Hawksworth, D. L., The fungal dimension of biodiversity - magnitude, significance, and conservation. Mycological Research, 1991. 95: p. 641-655. 10. Le Calvez, T., Burgaud, G., Mahe, S., Barbier, G., and Vandenkoornhuyse, P., Fungal diversity in deep-sea hydrothermal ecosystems. Applied and Environmental Microbiology, 2009. 75(20): p. 6415-6421. 11. Poli, A., Finore, I., Romano, I., Gioiello, A., Lama, L., and Nicolaus, B., Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms, 2017. 5(2). 12. Blunt, J. W., Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., and Prinsep, M. R., Marine natural products. Natural Product Reports, 2018. 35(1): p. 8-53. 13. Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H., and Prinsep, M. R., Marine natural products. Natural Product Reports, 2016. 33(3): p. 382-431. 14. Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., and Prinsep, M. R., Marine natural products. Natural Product Reports, 2017. 34(3): p. 235-294. 15. Conte, M., Fontana, E., Nebbioso, A., and Altucci, L., Marine-derived secondary metabolites as promising epigenetic bio-compounds for anticancer therapy. Marine Drugs, 2020. 19(1): p. 15. 16. Dezaire, A., Marchand, C. H., Vallet, M., Ferrand, N., Chaouch, S., Mouray, E., Larsen, A. K., Sabbah, M., Lemaire, S. D., Prado, S., and Escargueil, A. E., Secondary metabolites from the culture of the marine-derived fungus Paradendryphiella salina PC362H and evaluation of the anticancer activity of its metabolite hyalodendrin. Marine Drugs, 2020. 18(4): p. 191. 17. Mayer, A. M. S., Rodríguez, A. D., Berlinck, R. G. S., and Fusetani, N., Marine pharmacology in 2007–8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mec. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2011. 153(2): p. 191-222. 18. Teixeira, T. R., Abreu, P. G., Yatsuda, A. P., Clementino, L. C., Graminha, M. A. S., Jordao, L. G., Pohlit, A. M., Colepicolo, P., and Debonsi, H. M., Antiparasitic metabolites isolated from the antarctic algae-associated fungus: Penicillium echinulatum. Marine Drugs, 2020. 18(1): p. 105. 19. Wang, H. C., Ke, T. Y., Ko, Y. C., Lin, J. J., Chang, J. S., and Cheng, Y. B., Anti-inflammatory Azaphilones from the edible alga-derived fungus Penicillium sclerotiorum. Marine Drugs, 2021. 19(10): p. 34. 20. Gunasekera, S. P., Gunasekera, M., Longley, R. E., and Schulte, G. K., Discodermolide: A new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. The Journal of Organic Chemistry, 1990. 55(16): p. 4912-4915. 21. Smith, A. B. and Freeze, B. S., (+)-Discodermolide: Total synthesis, construction of novel analogues, and biological evaluation. Tetrahedron, 2007. 64(2): p. 261-298. 22. Forman, M. S., Trojanowski, J. Q., and Lee, V. M. Y., Neurodegenerative diseases: A decade of discoveries paves the way for therapeutic breakthroughs. Nature Medicine, 2004. 10(10): p. 1055-1063. 23. Buttachon, S., Ramos, A. A., Inacio, A., Dethoup, T., Gales, L., Lee, M., Costa, P. M., Silva, A. M. S., Sekeroglu, N., Rocha, E., Pinto, M. M. M., Pereira, J. A., and Kijjoa, A., Bis-indolyl benzenoids, hydroxypyrrolidine derivatives and other constituents from cultures of the marine sponge-associated fungus Aspergillus candidus KUFA0062. Marine Drugs, 2018. 16(4): p. 33. 24. De Sa, J. D. M., Pereira, J. A., Dethoup, T., Cidade, H., Sousa, M. E., Rodrigues, I. C., Costa, P. M., Mistry, S., Silva, A. M. S., and Kijjoa, A., Anthraquinones, diphenyl ethers, and their derivatives from the culture of the marine sponge-associated fungus Neosartorya spinosa KUFA1047. Marine Drugs, 2021. 19(8): p. 46. 25. Jiang, L. L., Tang, J. X., Bo, Y. H., Li, Y. Z., Feng, T., Zhu, H. W., Yu, X., Zhang, X. X., Zhang, J. L., and Wang, W. Y., Cytotoxic secondary metabolites isolated from the marine alga-associated fungus Penicillium chrysogenum LD-201810. Marine Drugs, 2020. 18(5): p. 186. 26. Kumla, D., Aung, T. S., Buttachon, S., Dethoup, T., Gales, L., Pereira, J. A., Inacio, A., Costa, P. M., Lee, M., Sekeroglu, N., Silva, A. M. S., Pinto, M. M. M., and Kijjoa, A., A new dihydrochromone dimer and other secondary metabolites from cultures of the marine sponge-associated fungi Neosartorya fennelliae KUFA0811 and Neosartorya tsunodae KUFC9213. Marine Drugs, 2017. 15(12): p. 375. 27. Sun, C. X., Zhang, Z. P., Ren, Z. L., Yu, L., Zhou, H., Han, Y. X., Shah, M., Che, Q., Zhang, G. J., Li, D. H., and Zhu, T. J., Antibacterial cyclic tripeptides from antarctica-sponge-derived fungus Aspergillus insulicola HDN151418. Marine Drugs, 2020. 18(11): p. 532. 28. Wei, X., Feng, C., Wang, S. Y., Zhang, D. M., Li, X. H., and Zhang, C. X., New indole diketopiperazine alkaloids from soft coral-associated epiphytic fungus Aspergillus sp. EGF 15-0-3. Chemistry & Biodiversity, 2020. 17(5): p. 125. 29. Yue, Y., Yu, H. H., Li, R. F., Hu, L. F., Liu, S., Xing, R. E., and Li, P. C., Isolation and identification of antimicrobial metabolites from sea anemone-derived fungus Emericella sp. SMA01. Journal of Oceanology and Limnology, 2021. 39(3): p. 1010-1019. 30. Zhang, J., Yang, Z. Q., Liang, Y., Zhong, L. P., Lin, H. T., Zhong, B. L., Li, L. C., Xu, S. H., and Liu, Y. H., Four new C9 metabolites from the sponge-associated fungus Gliomastix sp. ZSDS1-F7-2. Marine Drugs, 2018. 16(7): p. 301. 31. Moghadasi, Z., Jamili, S., Shahbazadeh, D., and Bagheri, K. P., Toxicity and potential pharmacological activities in the persian gulf venomous sea anemone, Stichodactyla haddoni. Iranian Journal of Pharmaceutical Research, 2018. 17(3): p. 940-955. 32. Sharma, R., Kulkarni, G., Sonawane, M. S., and Shouche, Y. S., A new endophytic species of Arthrinium (apiosporaceae) from Jatropha podagrica. Mycoscience, 2014. 55(2): p. 118-123. 33. Bao, J., He, F., Yu, J.-H., Zhai, H., Cheng, Z.-Q., Jiang, C.-S., Zhang, Y., Zhang, Y., Zhang, X., Chen, G., and Zhang, H., New chromones from a marine-derived fungus, Arthrinium sp., and their biological activity. Molecules, 2018. 23(8): p. 1982. 34. Ebada, S. S., Schulz, B., Wray, V., Totzke, F., Kubbutat, M. H. G., Müller, W. E. G., Hamacher, A., Kassack, M. U., Lin, W., and Proksch, P., Arthrinins a–d: Novel diterpenoids and further constituents from the sponge derived fungus Arthrinium sp. Bioorganic & Medicinal Chemistry, 2011. 19(15): p. 4644-4651. 35. Elissawy, A. M., Ebada, S. S., Ashour, M. L., Özkaya, F. C., Ebrahim, W., Singab, A. B., and Proksch, P., Spiroarthrinols a and b, two novel meroterpenoids isolated from the sponge-derived fungus Arthrinium sp. Phytochemistry Letters, 2017. 20: p. 246-251. 36. Iimura, S., Oka, M., Narita, Y., Konishi, M., Kakisawa, H., Gao, Q., and Oki, T., Terpestacin, a novel syncytium formation inhibitor, isolated from Arthrinium species. Tetrahedron Letters, 1993. 34(3): p. 493-496. 37. Tsukada, M., Fukai, M., Miki, K., Shiraishi, T., Suzuki, T., Nishio, K., Sugita, T., Ishino, M., Kinoshita, K., Takahashi, K., Shiro, M., and Koyama, K., Chemical constituents of a marine fungus, Arthrinium sacchari. Journal of Natural Products, 2011. 74(7): p. 1645-1649. 38. Fan, B. C., Parrot, D., Blumel, M., Labes, A., and Tasdemir, D., Influence of OSMAC-based cultivation in metabolome and anticancer activity of fungi associated with the brown alga Fucus vesiculosus. Marine Drugs, 2019. 17(1): p. 67. 39. Wei, Q., Bai, J., Yan, D. J., Bao, X. Q., Li, W. T., Liu, B. Y., Zhang, D., Qi, X. B., Yu, D. Q., and Hu, Y. C., Genome mining combined metabolic shunting and OSMAC strategy of an endophytic fungus leads to the production of diverse natural products. Acta Pharmaceutica Sinica B, 2021. 11(2): p. 572-587. 40. Chen, K., Wu, X. Q., Huang, M. X., and Han, Y. Y., First report of brown culm streak of Phyllostachys praecox caused by Arthrinium arundinis in Nanjing, China. Plant Disease, 2014. 98(9): p. 1274-1274. 41. Chen, K., Wu, X. Q., Huang, M. X., and Han, Y. Y., First report of brown culm streak of Phyllostachys praecox caused by Arthrinium arundinis in Nanjing, China. Plant Disease, 2014. 98(9): p. 1274. 42. Rai, M. K., Mycosis in man due to Arthrinium phaeospermum var indicum - 1st case-report. Mycoses, 1989. 32(9): p. 472-475. 43. Morishita, Y., Okazaki, Y., Luo, Y. Y., Nunoki, J., Taniguchi, T., Oshima, Y., and Asai, T., Use of plant hormones to activate silent polyketide biosynthetic pathways in Arthrinium sacchari, a fungus isolated from a spider. Organic & Biomolecular Chemistry, 2019. 17(4): p. 780-784. 44. Ishiyama, T., Furuta, T., Takai, M., and Okimoto, Y., L-Threo-beta-hydroxyaspartic acid as an antibiotic amino acid. The Journal of Antibiotics, 1975. 28(10): p. 821-823. 45. Tsukamoto, S., Yoshida, T., Hosono, H., Ohta, T., and Yokosawa, H., Hexylitaconic acid: A new inhibitor of p53–HDM2 interaction isolated from a marine-derived fungus, Arthrinium sp. Bioorganic & Medicinal Chemistry Letters, 2006. 16(1): p. 69-71. 46. Wang, J. F., Xu, F. Q., Wang, Z., Lu, X., Wan, J. T., Yang, B., Zhou, X. F., Zhang, T. Y., Tu, Z. C., and Liu, Y., A new naphthalene glycoside from the sponge-derived fungus Arthrinium sp. ZSDS1-F3. Natural Product Research, 2014. 28(14): p. 1070-1074. 47. Sofian, F. F., Suzuki, T., Supratman, U., Harneti, D., Maharani, R., Salam, S., Abdullah, F. F., Yoshida, J., Ito, Y., Koseki, T., and Shiono, Y., The 2,3-epoxy naphthoquinol produced by endophyte Arthrinium marii M-211. Natural Product Research, 2021: p. 1-7. 48. Zhao, Z., Ding, W., Wang, P.-M., Zheng, D., and Xu, J., Five polyketides isolated from the marine-derived fungus Arthrinium sp. Natural Product Research, 2021. 35(15): p. 2470-2475. 49. Van Eijk, G. W., Bostrycin, a tetrahydroanthraquinone pigment and some other metabolites from the Fungusarthrinium phaeospermum. Experientia, 1975. 31(7): p. 783-784. 50. Zhang, X., Wang, T. T., Xu, Q. L., Xiong, Y., Zhang, L., Han, H., Xu, K., Guo, W. J., Xu, Q., Tan, R. X., and Ge, H. M., Genome mining and comparative biosynthesis of meroterpenoids from two phylogenetically distinct fungi. Angewandte Chemie International Edition, 2018. 57(27): p. 8184-8188. 51. Wang, J., Wei, X., Qin, X., Lin, X., Zhou, X., Liao, S., Yang, B., Liu, J., Tu, Z., and Liu, Y., Arthpyrones a–c, pyridone alkaloids from a sponge-derived fungus Arthrinium arundinis ZSDS1-F3. Organic Letters, 2015. 17(3): p. 656-659. 52. Shu, Y., Wang, J.-P., Li, B.-X., Gan, J.-L., Ding, H., Liu, R., Cai, L., and Ding, Z.-T., Bioactive cytochalasans from the fungus Arthrinium arundinis DJ-13. Phytochemistry, 2022. 194: p. 113009. 53. Vijayakumar, E. K. S., Roy, K., Chatterjee, S., Deshmukh, S. K., Ganguli, B. N., Fehlhaber, H. W., and Kogler, H., Arthrichitin. A new cell wall active metabolite Fromarthrinium phaeospermum. The Journal of Organic Chemistry, 1996. 61(19): p. 6591-6593. 54. Belofsky, G. N., Gloer, K. B., Gloer, J. B., Wicklow, D. T., and Dowd, P. F., New p-terphenyl and polyketide metabolites from the sclerotia of Penicillium raistrickii. Journal of Natural Products, 1998. 61(9): p. 1115-1119. 55. Li, J. L., Zhang, P., Lee, Y. M., Hong, J., Yoo, E. S., Bae, K. S., and Jung, J. H., Oxygenated hexylitaconates from a marine sponge-derived fungus Penicillium sp.. Chemical and Pharmaceutical Bulletin, 2011. 59(1): p. 120-123. 56. Hoye, T. R., Jeffrey, C. S., and Shao, F., Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nature Protocols, 2007. 2(10): p. 2451-2458. 57. André, A., Wojtowicz, N., Touré, K., Stien, D., and Eparvier, V., New acorane sesquiterpenes isolated from the endophytic fungus Colletotrichum gloeosporioides SNB-GSS07. Tetrahedron Letters, 2017. 58(13): p. 1269-1272. 58. Du, B.-W., Zhang, X.-J., Shi, N., Peng, T., Gao, J.-B., Azimova, B., Zhang, R., Pu, D.-B., Wang, C., Abduvaliev, A., Rakhmanov, A., Zhang, G.-L., Xiao, W.-L., and Wang, F., Luteolin-7-methylether from Leonurus japonicus inhibits estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19). European Journal of Pharmacology, 2020. 879: p. 173154. 59. Li, A., Mishra, Y., Malik, M., Wang, Q., Li, S., Taylor, M., Reichert, D. E., Luedtke, R. R., and Mach, R. H., Evaluation of n-phenyl homopiperazine analogs as potential dopamine D3 receptor selective ligands. Bioorganic & Medicinal Chemistry, 2013. 21(11): p. 2988-2998. 60. Ali, S., Khan, A. L., Ali, L., Rizvi, T. S., Khan, S. A., Hussain, J., Hamayun, M., and Al-Harrasi, A., Enzyme inhibitory metabolites from endophytic Penicillium citrinum isolated from Boswellia sacra. Archives of Microbiology, 2017. 199(5): p. 691-700. 61. Llevot, A., Grau, E., Carlotti, S., Grelier, S., and Cramail, H., Selective laccase-catalyzed dimerization of phenolic compounds derived from lignin: Towards original symmetrical bio-based (bis) aromatic monomers. Journal of Molecular Catalysis B: Enzymatic, 2016. 125: p. 34-41. 62. Xu, Y., Wang, C., Liu, H., Zhu, G., Fu, P., Wang, L., and Zhu, W., Meroterpenoids and isocoumarinoids from a myrothecium fungus associated with Apocynum venetum. Marine Drugs, 2018. 16(10): p. 363. 63. Yuan, C., Li, G., Wu, C.-S., Wang, H.-Y., Zhao, Z.-T., and Lou, H.-X., A new fatty acid from the endolichenic fungus Massarina sp.. Chemistry of Natural Compounds, 2015. 51(3): p. 415-417. 64. Wang, F. and Liu, J.-K., A pair of novel heptentriol stereoisomers from the Ascomycete Daldinia concentrica. Helvetica Chimica Acta, 2004. 87(8): p. 2131-2134. 65. Wu, Z.-C., Li, D.-L., Chen, Y.-C., and Zhang, W.-M., A new isofuranonaphthalenone and benzopyrans from the endophytic fungus Nodulisporium sp. A4 from Aquilaria sinensis. Helvetica Chimica Acta, 2010. 93(5): p. 920-924. 66. Chang, R., Wang, C., Zeng, Q., Guan, B., Zhang, W., and Jin, H., Chemical constituents of the stems of Celastrus rugosus. Archives of Pharmacal Research, 2013. 36(11): p. 1291-1301. 67. Hue, C. T., Oanh, N. T. T., Giap, T. H., Hang, N. T. M., Mishchenko, N. P., Fedoreev, S. A., Spiridovich, E. V., Van Minh, C., Vuong, N. Q., and Thanh, L. N., Metabolites of the Vietnamese plant Amaranthus viridis. Chemistry of Natural Compounds, 2017. 53(6): p. 1150-1151. 68. Frost, D. J. and Barzilay, J., Proton magnetic resonance identification of nonconjugated cis-unsaturated fatty acids and esters. Analytical Chemistry, 1971. 43(10): p. 1316-1318. 69. Villacorta, G. and San Filippo, J., Lithium tungsten dioxide promoted Claisen-Tishchenko condensation of aromatic and aliphatic aldehydes. The Journal of Organic Chemistry, 1983. 48(8): p. 1151-1154. 70. Abdel-Lateff, A., Klemke, C., König, G. M., and Wright, A. D., Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. Journal of Natural Products, 2003. 66(5): p. 706-708. 71. Liu, R., Gu, Q., Zhu, W., Cui, C., Fan, G., Fang, Y., Zhu, T., and Liu, H., 10-Phenyl-[12]-cytochalasins Z7, Z8, and Z9 from the marine-derived fungus Spicaria elegans. Journal of Natural Products, 2006. 69(6): p. 871-875. 72. Haval, K. P. and Argade, N. P., General strategy for the synthesis of natural and unnatural dialkylmaleic anhydrides. The Journal of Organic Chemistry, 2008. 73(17): p. 6936-6938. 73. Isogai, A., Washizu, M., Kondo, K., Murakoshi, S., and Suzuki, A., Isolation and identification of (+)-hexylitaconic acid as a plant growth regulator. Agricultural and Biological Chemistry, 1984. 48(10): p. 2607-2609. 74. Klemke, C., Kehraus, S., Wright, A. D., and König, G. M., New secondary metabolites from the marine endophytic fungus Apiospora montagnei. Journal of Natural Products, 2004. 67(6): p. 1058-1063. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85730 | - |
| dc.description.abstract | 本研究利用病原菌與病毒篩選活性平台 (Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, Escherichia coli和Epstein-Barr virus) 來篩選具有抗菌和抗病毒潛力的海葵衍生真菌株。 實驗結果顯示,由瘤砂海葵 (Palythoa sp.) 單離出之衍生真菌株Arthrinium arundinis MA30之粗萃物具有抗 S. aureus、C. albicans 與EBV病毒的顯著效果,因而選定該菌株進行其天然物研究。接著,利用OSMAC (one strain many compound) 的方式進行了不同條件下的液態和糙米固態培養後,分離並純化此株真菌的次級代謝物,計獲得 32個化合物,再藉由各種光譜資料解析其結構,其中 6個為新化合物,分別為 arthrinoic acid (1)、hexylaconitic anhydride methyl ester (2)、iso-hydroxylated hexylitaconic acid (3) 、(3S,8R)-8-hydroxy-3-carboxy-2-methylenenonanoic acid (4)、arthripenoid G (5) 及arthripenoid H (6),另外 26 個為已知化合物,分別為succinic acid (7)、sumiki's acid (8)、pyromucic acid (9)、4-(2-hydroxyethyl)benzoic acid (10)、4-hydroxyphenylacetic acid (11)、2-hydroxyphenylacetic acid (12)、methyl vanillate (13)、6,8-dihydroxy-3,4-dimethylisochromen-1-one (14)、3,4,8-THT (15)、2β-methyl-5-hydroxy-2H-1-benzopyran-4(3H)-one (16)、2β-methyl-4-methoxy-3,4-dihydro-2H-1-benzopyran-5-ol (17)、(+)-mellein (18)、(R)-2-hexyl-3-methylenesuccinic acid (19)、palmitic acid (20)、linoleic acid (21)、thalictric acid (22)、2-hexyl-3-methylmaleic anhydride (23)、TXIB (24)、anomalin A (25)、anomalin B (26)、1,3,5,6-tetrahydroxy-8-methylxanthone (27)、ergosterol (28)、cytochalasin E (29)、arthripenoid B (30)、arthripenoid C (31) 和arthripenoid F (32)。所有純物質在抗發炎活性平台的評估上,得知化合物5、6、27、30、31和32具有抑制小鼠神經膠細胞BV-2產生一氧化氮的 (nitric oxide, NO) 效果,於10 µM下抑制NO產生的比例介於80至100%之間,其中化合物27和31有不錯的活性且不具顯著的細胞毒性,與IC50分別為5.3 ± 0.6 和1.55 ± 0.4 μM。 | zh_TW |
| dc.description.abstract | In an attempt to investigate bioactive fungal strains, preliminary field-sampling and bio-assays were conducted. The microorganisms used in antimicrobial and antiviral bio-assay platform included Staphylococcus aureus, Cryptococcus neoformans, Candida albicans, and Escherichia coli, as well as Epstein-Barr virus (EBV), respectively. From the macroalgae and sea anemone collected at northeastern coast of Taiwan (Badouzi), 220 fungal strains were isolated. Among these, Arthrinium arundinis MA30 from sea anemone was selected due to its significant inhibition against S. aureus, C. neoformans, and EBV. An OSMAC (one strain many compounds) strategy was applied, where Arthrinium arundinis MA30 was cultured in different environments, including liquid-state fermentation under shaking, liquid-state fermentation under aeration, and solid-state fermentation. As a result of isolation and purification on the fermented products, 32 compounds were identified and six of which were previously unreported compounds, including arthrinoic acid (1), hexylaconitic anhydride methyl ester (2), iso-hydroxylated hexylitaconic acid (3), (3S,8R)-8-hydroxy-3-carboxy-2-methylenenonanoic acid (4), arthripenoid G (5), and arthripenoid H (6), in addition of 26 known compounds, including succinic acid (7), sumiki's acid (8), pyromucic acid (9), 4-(2-hydroxyethyl)benzoic acid (10), 4-hydroxyphenylacetic acid (11), 2-hydroxyphenylacetic acid (12), methyl vanillate (13), 6,8-dihydroxy-3,4-dimethylisochromen-1-one (14), 3,4,8-THT (15), 2β-methyl-5-hydroxy-2H-1-benzopyran-4(3H)-one (16), 2β-methyl-4-methoxy-3,4-dihydro-2H-1-benzopyran-5-ol (17), (+)-mellein (18), (R)-2-hexyl-3-methylenesuccinic acid (19),palmitic acid (20), linoleic acid (21), thalictric acid (22), 2-hexyl-3-methylmaleic anhydride (23), TXIB (24), anomalin A (25), anomalin B (26), 1,3,5,6-tetrahydroxy-8-methylxanthone (27), ergosterol (28), cytochalasin E (29), arthripenoid B (30), arthripenoid C (31), and arthripenoid F (32). The structures of these compounds were elucidated by comprehensive spectroscopic methods, and some of their absolute configurations were determined by Mosher’s reagent, circular dichroism, and single crystal X-ray diffraction. Of these compounds, 5, 6, 27, 30, 31, and 32 exhibited high inhibition rate towards nitric oxide (NO) production in mouse glial cells BV-2 cells, and the proportion of inhibiting NO production at 10 µM ranging from 80 to 100%. The IC50 values of the most active compounds 27 and 31 were 5.3 ± 0.6 and 1.55 ± 0.4 μM, respectively, without significant cytotoxicity. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:22:40Z (GMT). No. of bitstreams: 1 U0001-2205202223320200.pdf: 8466013 bytes, checksum: 315cb2e341af3f886bd11302b81d4a14 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書..........................................................i 致謝....................................................................ii 中文摘要................................................................iii ABSTRACT.................................................................v TABLE OF CONTENTS.......................................................xi LIST OF FIGURES.........................................................xv LIST OF TABLES.......................................................xxiii LIST OF ABBREVIATIONS..................................................xix 1. INTRODUCTION AND RESEARCH PURPOSE.....................................1 1.1 Marine-derived fungi and their medicinal properties..................1 1.2 Introduction of fungal strain........................................5 2. LITERATURE REVIEW.....................................................5 3. RESULTS..............................................................22 3.1 Fermentation........................................................22 3.1.1 Liquid-state fermentation under aeration..........................22 3.1.2 Liquid-state flask fermentation under shaking.....................24 3.1.3 Solid-state fermentation..........................................26 3.2 Structure elucidation of previously unreported compounds............28 3.2.1 Structure elucidation of compound 1...............................28 3.2.2 Structure elucidation of compound 2...............................35 3.2.3 Structure elucidation of compound 3...............................44 3.2.4 Structure elucidation of compound 4...............................52 3.2.5 Structure elucidation of compound 5...............................61 3.2.6 Structure elucidation of compound 6...............................73 3.3 Structure elucidation of previously reported compounds..............84 3.3.1 Structure elucidation of compound 7...............................84 3.3.2 Structure elucidation of compound 8...............................86 3.3.3 Structure elucidation of compound 9...............................89 3.3.4 Structure elucidation of compound 10..............................91 3.3.5 Structure elucidation of compound 11..............................94 3.3.6 Structure elucidation of compound 12..............................96 3.3.7 Structure elucidation of compound 13..............................99 3.3.8 Structure elucidation of compound 14.............................102 3.3.9 Structure elucidation of compound 15.............................105 3.3.10 Structure elucidation of compound 16............................108 3.3.11 Structure elucidation of compound 17............................111 3.3.12 Structure elucidation of compound 18............................114 3.3.13 Structure elucidation of compound 19............................117 3.3.14 Structure elucidation of compound 20............................120 3.3.15 Structure elucidation of compound 21............................122 3.3.16 Structure elucidation of compound 22............................125 3.3.17 Structure elucidation of compound 23............................127 3.3.18 Structure elucidation of compound 24............................131 3.3.19 Structure elucidation of compound 25............................135 3.3.20 Structure elucidation of compound 26............................139 3.3.21 Structure elucidation of compound 27............................143 3.3.22 Structure elucidation of compound 28............................147 3.3.23 Structure elucidation of compound 29............................151 3.3.24 Structure elucidation of compound 30............................157 3.3.25 Structure elucidation of compound 31............................161 3.3.26 Structure elucidation of compound 32............................166 3.4 Physical properties of each compound...............................170 3.5 Bioactivity of compounds...........................................176 4. EXPERIMENT SECTIONS.................................................178 4.1 Instruments and reagents...........................................178 4.1.1 Physical properties measuring instruments........................178 4.1.2 Column chromatography colloids...................................179 4.1.3 Reagents and solvents............................................179 4.1.4 Fungal culture media.............................................179 4.1.5 Bacterial culture media..........................................179 4.2 Materials and methods..............................................180 4.2.1 Research samples.................................................180 4.2.2 Isolation and screening of fungal strain.........................180 4.2.3 Bioassay platforms...............................................182 4.2.4 Bioassay experimental procedure..................................183 4.2.5 Fungal strain for biological screening...........................183 4.2.6 Bacterial strains for biological screening.......................184 4.2.7 Identification of fungal strain..................................184 4.3 Fungus culture and its chemical constituents.......................187 4.3.1 Preparation of medium............................................187 4.3.2 Preservation of fungal strains...................................187 4.3.3 Flask shake liquid-state fermentation extraction.................187 4.3.4 Chemical constituent purification and isolation of fungus from flask shake liquid-state fermentation........................................188 4.3.5 Chemical constituent purification and isolation of fungus from liquid-state fermentation under aeration...............................192 4.3.6 Chemical constituent purification and isolation of fungus from solid-state fermentation...............................................196 4.4 Assessment of anti-inflammatory activity...........................197 4.4.1 Cell culture.....................................................197 4.4.2 Griess reagent assay.............................................198 4.4.3 Cytotoxicity test................................................199 4.4.4 Purpose and principle of MTT assay...............................199 4.4.5 MTT assay........................................................200 5. DISCUSSIONS.........................................................201 6. REFERENCES..........................................................204 7. APPENDIX............................................................216 | |
| dc.language.iso | en | |
| dc.subject | Arthrinium arundinis | zh_TW |
| dc.subject | 天然物 | zh_TW |
| dc.subject | 抗發炎 | zh_TW |
| dc.subject | 細胞毒性 | zh_TW |
| dc.subject | arthripenoid | zh_TW |
| dc.subject | 瘤砂海葵衍生真菌 | zh_TW |
| dc.subject | arthripenoid | en |
| dc.subject | anti-inflammation | en |
| dc.subject | natural products | en |
| dc.subject | cytotoxicity | en |
| dc.subject | Arthrinium arundinis | en |
| dc.subject | Palythoa sp. derived fungi | en |
| dc.title | 瘤砂海葵衍生真菌株Arthrinium arundinis MA30之成分研究 | zh_TW |
| dc.title | Chemical Constituents from Palythoa sp. derived Arthrinium arundinis MA30 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭哲志(George Hsiao),陳日榮(Jih-Jung Chen),宋秉鈞(Ping-Jyun Sung) | |
| dc.subject.keyword | 瘤砂海葵衍生真菌,Arthrinium arundinis,arthripenoid,天然物,抗發炎,細胞毒性, | zh_TW |
| dc.subject.keyword | Palythoa sp. derived fungi,Arthrinium arundinis,arthripenoid,natural products,anti-inflammation,cytotoxicity, | en |
| dc.relation.page | 224 | |
| dc.identifier.doi | 10.6342/NTU202200789 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-06-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2205202223320200.pdf | 8.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
