Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85712
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬(Hsueh-Fen Juan)
dc.contributor.authorAlbert Lien
dc.contributor.author李律zh_TW
dc.date.accessioned2023-03-19T23:22:11Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-06-14
dc.identifier.citation1 Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17, 333-351 (2016). 2 Stuart, T. & Satija, R. Integrative single-cell analysis. Nat Rev Genet 20, 257-272 (2019). 3 Wu, C. Y. et al. Integrative single-cell analysis of allele-specific copy number alterations and chromatin accessibility in cancer. Nat Biotechnol 39, 1259-1269 (2021). 4 Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 1113-1120 (2013). 5 Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462-477 (2013). 6 Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. Science 362, eaav1898 (2018). 7 Hmeljak, J. et al. Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discov 8, 1548-1565 (2018). 8 Kahles, A. et al. Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell 34, 211-224.e216 (2018). 9 Reyna, M. A. et al. Pathway and network analysis of more than 2500 whole cancer genomes. Nat Commun 11, 729 (2020). 10 Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e1821 (2019). 11 Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat Med 26, 1742-1753 (2020). 12 Greenberg, M. V. C. & Bourc'his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20, 590-607 (2019). 13 Hu, X. et al. Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas. Nat Commun 12, 687 (2021). 14 Liu, Y. et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat Biotechnol 37, 424-429 (2019). 15 Zhong, Z. et al. DNA methylation-linked chromatin accessibility affects genomic architecture in Arabidopsis. Proc Natl Acad Sci U S A 118 (2021). 16 Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13, 484-492 (2012). 17 Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet 52, 331-341 (2020). 18 Nowell, C. The minute chromosome (Ph1) in chronic granulocytic leukemia. Blut: Zeitschrift für die Gesamte Blutforschung 8, 65-66 (1962). 19 Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137-141 (2021). 20 Zhao, X. K. et al. Focal amplifications are associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma. Nat Commun 12, 6489 (2021). 21 Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e3529 (2021). 22 Zhang, L. et al. Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. Proc Natl Acad Sci U S A 116, 9014-9019 (2019). 23 Parra, R. G. et al. Single cell multi-omics analysis of chromothriptic medulloblastoma highlights genomic and transcriptomic consequences of genome instability. bioRxiv, 2021.2006.2025.449944 (2021). 24 Cao, J. et al. A human cell atlas of fetal gene expression. Science 370 (2020). 25 Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat Rev Genet 12, 56-68 (2011). 26 Guney, E., Menche, J., Vidal, M. & Barábasi, A. L. Network-based in silico drug efficacy screening. Nat Commun 7, 10331 (2016). 27 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011). 28 Li, A., Yu, W. H., Hsu, C. L., Huang, H. C. & Juan, H. F. Modular signature of long non-coding RNA association networks as a prognostic biomarker in lung cancer. BMC Med Genomics 14, 290 (2021). 29 Fitzmaurice, C. et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 5, 1749-1768 (2019). 30 Reck, M. & Rabe, K. F. Precision Diagnosis and Treatment for Advanced Non-Small-Cell Lung Cancer. N Engl J Med 377, 849-861 (2017). 31 National Comprehensive Cancer Network. Non-small Cell Lung Cancer (Version 6, 2020), <https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf> (2020). 32 Ma, L., Bajic, V. B. & Zhang, Z. On the classification of long non-coding RNAs. RNA Biol 10, 925-933 (2013). 33 Martens, J. A., Laprade, L. & Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429, 571-574 (2004). 34 Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. & Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445, 666-670 (2007). 35 Hirota, K. et al. Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 456, 130-134 (2008). 36 Pandey, G. K. et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell 26, 722-737 (2014). 37 Marín-Béjar, O. et al. Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome Biol 14, R104 (2013). 38 Yoon, J. H. et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell 47, 648-655 (2012). 39 Alaei, S., Sadeghi, B., Najafi, A. & Masoudi-Nejad, A. LncRNA and mRNA integration network reconstruction reveals novel key regulators in esophageal squamous-cell carcinoma. Genomics 111, 76-89 (2019). 40 Jiang, L. et al. Co-expression network analysis of the lncRNAs and mRNAs associated with cervical cancer progression. Arch Med Sci 15, 754-764 (2019). 41 Zhou, M. et al. Computational recognition of lncRNA signature of tumor-infiltrating B lymphocytes with potential implications in prognosis and immunotherapy of bladder cancer. Brief Bioinform 22 (2021). 42 Zhang, H. et al. A Panel of 12-lncRNA Signature Predicts Survival of Pancreatic Adenocarcinoma. J Cancer 10, 1550-1559 (2019). 43 Li, J. et al. LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut 63, 1700-1710 (2014). 44 Ma, B., Li, Y. & Ren, Y. Identification of a 6-lncRNA prognostic signature based on microarray re-annotation in gastric cancer. Cancer Med 9, 335-349 (2020). 45 Tang, J. et al. A prognostic 10-lncRNA expression signature for predicting the risk of tumour recurrence in breast cancer patients. J Cell Mol Med 23, 6775-6784 (2019). 46 Li, J. et al. Identification of a five-lncRNA signature for predicting the risk of tumor recurrence in patients with breast cancer. Int J Cancer 143, 2150-2160 (2018). 47 Bass, J. I. F. et al. Using networks to measure similarity between genes: association index selection. Nat Methods 10, 1169-1176 (2013). 48 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498-2504 (2003). 49 Blanche, P., Dartigues, J. F. & Jacqmin-Gadda, H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med 32, 5381-5397 (2013). 50 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550 (2005). 51 Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 27, 1739-1740 (2011). 52 Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1, 417-425 (2015). 53 Carlevaro-Fita, J. et al. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol 3, 56 (2020). 54 Feldstein, O. et al. The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol Cancer 12, 131 (2013). 55 Hart, J. R., Roberts, T. C., Weinberg, M. S., Morris, K. V. & Vogt, P. K. MYC regulates the non-coding transcriptome. Oncotarget 5, 12543-12554 (2014). 56 Kim, T. et al. Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis. J Natl Cancer Inst 107 (2015). 57 Wang, L. G. et al. Androgen receptor overexpression in prostate cancer linked to Pur alpha loss from a novel repressor complex. Cancer Res 68, 2678-2688 (2008). 58 Takayama, K. et al. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. Embo j 32, 1665-1680 (2013). 59 Chakravarty, D. et al. The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 5, 5383 (2014). 60 Sánchez, Y. et al. Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature. Nat Commun 5, 5812 (2014). 61 Huarte, M. The emerging role of lncRNAs in cancer. Nat Med 21, 1253-1261 (2015). 62 Cong, Z. et al. Long non-coding RNA linc00665 promotes lung adenocarcinoma progression and functions as ceRNA to regulate AKR1B10-ERK signaling by sponging miR-98. Cell Death & Disease 10, 84 (2019). 63 Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, Pier P. A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell 146, 353-358 (2011). 64 Tay, Y., Rinn, J. & Pandolfi, P. P. The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344-352 (2014). 65 Wu, X., Sui, Z., Zhang, H., Wang, Y. & Yu, Z. Integrated Analysis of lncRNA-Mediated ceRNA Network in Lung Adenocarcinoma. Front Oncol 10, 554759 (2020). 66 Zhang, H., Wang, Y. & Lu, J. Identification of lung-adenocarcinoma-related long non-coding RNAs by random walking on a competing endogenous RNA network. Ann Transl Med 7, 339 (2019). 67 van Dam, S., Võsa, U., van der Graaf, A., Franke, L. & de Magalhães, J. P. Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform 19, 575-592 (2018). 68 Menche, J. et al. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science (New York, N.Y.) 347, 1257601-1257601 (2015). 69 Yan, X. et al. Comprehensive Genomic Characterization of Long Non-coding RNAs across Human Cancers. Cancer Cell 28, 529-540 (2015). 70 Zhou, C. et al. Integrated Analysis of Copy Number Variations and Gene Expression Profiling in Hepatocellular carcinoma. Sci Rep 7, 10570 (2017). 71 Li, A., Huang, H. T., Huang, H. C. & Juan, H. F. LncTx: A network-based method to repurpose drugs acting on the survival-related lncRNAs in lung cancer. Comput Struct Biotechnol J 19, 3990-4002 (2021). 72 Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu Rev Biochem 81, 145-166 (2012). 73 Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22, 96-118 (2021). 74 Amodio, N. et al. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia 32, 1948-1957 (2018). 75 Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov 17, 547-558 (2018). 76 Smola, M. J. et al. SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc Natl Acad Sci U S A 113, 10322-10327 (2016). 77 Matsui, M. & Corey, D. R. Non-coding RNAs as drug targets. Nat Rev Drug Discov 16, 167-179 (2017). 78 Amodio, N. et al. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol 11, 63-63 (2018). 79 Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031-8041 (2003). 80 Schmidt, L. H. et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol 6, 1984-1992 (2011). 81 Loewen, G., Jayawickramarajah, J., Zhuo, Y. & Shan, B. Functions of lncRNA HOTAIR in lung cancer. J Hematol Oncol 7, 90-90 (2014). 82 Ren, M.-M. et al. Roles of HOTAIR in lung cancer susceptibility and prognosis. Mol Genet Genomic Med 8, e1299-e1299 (2020). 83 Woo, C. J. & Kingston, R. E. HOTAIR lifts noncoding RNAs to new levels. Cell 129, 1257-1259 (2007). 84 Cheng, F., Kovács, I. A. & Barabási, A. L. Network-based prediction of drug combinations. Nat Commun 10, 1197 (2019). 85 Fotis, C., Antoranz, A., Hatziavramidis, D., Sakellaropoulos, T. & Alexopoulos, L. G. Network-based technologies for early drug discovery. Drug Discov Today 23, 626-635 (2018). 86 Quinn, R. A. et al. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy. Trends Pharmacol Sci 38, 143-154 (2017). 87 Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4, 682-690 (2008). 88 Gao, S. et al. Identification and Construction of Combinatory Cancer Hallmark-Based Gene Signature Sets to Predict Recurrence and Chemotherapy Benefit in Stage II Colorectal Cancer. JAMA Oncol 2, 37-45 (2016). 89 Li, J. et al. Identification of high-quality cancer prognostic markers and metastasis network modules. Nat Commun 1, 34 (2010). 90 Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740-754 (2016). 91 Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41, D955-961 (2013). 92 Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34, D668-672 (2006). 93 Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607 (2012). 94 Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543-550 (2014). 95 Breslow, N. E. Analysis of Survival Data under the Proportional Hazards Model. International Statistical Review / Revue Internationale de Statistique 43, 45-57 (1975). 96 Dennis, G., Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4, P3 (2003). 97 Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 44, e71-e71 (2015). 98 Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47-e47 (2015). 99 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England) 26, 139-140 (2010). 100 Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77 (2011). 101 Nicola Lunardon, G. M., Nicola Torelli. ROSE: A package for binary imbalanced learning. R journal, 79-89 (2014). 102 Barabási, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat Rev Genet 12, 56-68 (2011). 103 Barabási, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nat Rev Genet 5, 101-113 (2004). 104 Silva-Fisher, J. M. et al. Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat Commun 11, 2156 (2020). 105 Belorkar, A., Vadigepalli, R. & Wong, L. SPSNet: subpopulation-sensitive network-based analysis of heterogeneous gene expression data. BMC Syst Biol 12, 28 (2018). 106 Li, A. et al. A Single-Cell Network-Based Drug Repositioning Strategy for Post-COVID-19 Pulmonary Fibrosis. Pharmaceutics 14, 971 (2022). 107 Fraser, E. Long term respiratory complications of covid-19. BMJ 370, m3001 (2020). 108 Morselli Gysi, D. et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc Natl Acad Sci 118, e2025581118 (2021). 109 Zhou, Y. et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov 6, 14 (2020). 110 Sharma, A. et al. A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. Hum Mol Genet 24, 3005-3020 (2015). 111 Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114-119 (2021). 112 Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19, 15 (2018). 113 Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57 (2009). 114 Vandevoorde, J. et al. Forced vital capacity and forced expiratory volume in six seconds as predictors of reduced total lung capacity. Eur Respir J 31, 391-395 (2008). 115 Mevik, B.-H. & Wehrens, R. The pls Package: Principal Component and Partial Least Squares Regression in R. J Stat Softw 18, 1 - 23 (2007). 116 Yang, I. V. et al. Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis. Thorax 68, 1114-1121 (2013). 117 Wu, D. et al. Dr AFC: drug repositioning through anti-fibrosis characteristic. Brief Bioinform 22 (2021). 118 Sahin, M. & Akkus, E. Fibroblast function in COVID-19. Pathol Res Pract 219, 153353-153353 (2021). 119 Aloufi, N. et al. Angiotensin-converting enzyme 2 expression in COPD and IPF fibroblasts: the forgotten cell in COVID-19. Am J Physiol Lung Cell Mol Physiol 320, L152-l157 (2021). 120 Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Bio 21, 31 (2020). 121 Seibold, M. A. et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med 364, 1503-1512 (2011). 122 Duckworth, A. et al. Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: a mendelian randomisation study. Lancet Respir Med 9, 285-294 (2021). 123 Raghu, G. et al. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am J Respir Crit Care Med 192, e3-19 (2015). 124 Canestaro, W. J., Forrester, S. H., Raghu, G., Ho, L. & Devine, B. E. Drug Treatment of Idiopathic Pulmonary Fibrosis: Systematic Review and Network Meta-Analysis. Chest 149, 756-766 (2016). 125 Karatzas, E., Kakouri, A. C., Kolios, G., Delis, A. & Spyrou, G. M. Fibrotic expression profile analysis reveals repurposed drugs with potential anti-fibrotic mode of action. PLoS One 16, e0249687 (2021). 126 Sieswerda, E. et al. Recommendations for antibacterial therapy in adults with COVID-19 - an evidence based guideline. Clin Microbiol Infect 27, 61-66 (2021). 127 Molyneaux, P. L. & Maher, T. M. The role of infection in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir Rev 22, 376-381 (2013). 128 Wuyts, W. A. et al. Azithromycin reduces pulmonary fibrosis in a bleomycin mouse model. Exp Lung Res 36, 602-614 (2010). 129 Liu, Y., Huang, G., Mo, B. & Wang, C. Artesunate ameliorates lung fibrosis via inhibiting the Notch signaling pathway. Exp Ther Med 14, 561-566 (2017). 130 Yang, D. et al. Dihydroartemisinin supresses inflammation and fibrosis in bleomycine-induced pulmonary fibrosis in rats. Int J Clin Exp Pathol 8, 1270-1281 (2015). 131 Ivanova, V. et al. Inhalation treatment of pulmonary fibrosis by liposomal prostaglandin E2. Eur J Pharm Biopharm 84, 335-344 (2013). 132 E, M. L., W, A. W., Yserbyt, J. & De Sadeleer, L. J. Statins: cause of fibrosis or the opposite? Effect of cardiovascular drugs in idiopathic pulmonary fibrosis. Respir Med 176, 106259 (2021). 133 Venkatadri, R. et al. MnTBAP Inhibits Bleomycin-Induced Pulmonary Fibrosis by Regulating VEGF and Wnt Signaling. J Cell Physiol 232, 506-516 (2017). 134 Oury, T. D. et al. Attenuation of bleomycin-induced pulmonary fibrosis by a catalytic antioxidant metalloporphyrin. Am J Respir Cell Mol Biol 25, 164-169 (2001). 135 Dolivo, D., Weathers, P. & Dominko, T. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. Acta Pharm Sin B 11, 322-339 (2021). 136 Sellarés, J. & Rojas, M. Quercetin in Idiopathic Pulmonary Fibrosis: Another Brick in the Senolytic Wall. Am J Respir Cell Mol Biol 60, 3-4 (2019). 137 Tong, B. et al. Tauroursodeoxycholic acid alleviates pulmonary endoplasmic reticulum stress and epithelial-mesenchymal transition in bleomycin-induced lung fibrosis. BMC Pulm Med 21, 149 (2021). 138 Kreuter, M. et al. Statin Therapy and Outcomes in Trials of Nintedanib in Idiopathic Pulmonary Fibrosis. Respiration 95, 317-326 (2018). 139 Guan, R. et al. Emodin ameliorates bleomycin-induced pulmonary fibrosis in rats by suppressing epithelial-mesenchymal transition and fibroblast activation. Sci Rep 6, 35696 (2016). 140 Chen, L. et al. Pretreatment with valproic acid alleviates pulmonary fibrosis through epithelial–mesenchymal transition inhibition in vitro and in vivo. Lab Invest 101, 1166-1175 (2021). 141 Jung, M.-Y. et al. Fatty acid synthase is required for profibrotic TGF-β signaling. FASEB J 32, 3803-3815 (2018). 142 Du, G. et al. Naringenin: A Potential Immunomodulator for Inhibiting Lung Fibrosis and Metastasis. Cancer Res 69, 3205-3212 (2009). 143 Zhang, L. et al. Fisetin Alleviated Bleomycin-Induced Pulmonary Fibrosis Partly by Rescuing Alveolar Epithelial Cells From Senescence. Front Pharmacol 11, 553690-553690 (2020). 144 Tzilas, V. et al. Vitamin D prevents experimental lung fibrosis and predicts survival in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 55, 17-24 (2019).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85712-
dc.description.abstract多體學資料之醫學應用已逐漸普及,許多疾病(例如癌症,新冠肺炎)的預後能受益於體學大數據分析,使病患有更長的存活期或較佳的藥物治療選擇。其中,網絡生物學能運用許多圖的特性來了解生物現象背後的複雜機制。肺癌及肺纖維化是兩個常見且預後不佳的胸腔疾病。隨著藥物的推陳出新,治療的選項也逐漸變多,然而,如何精準的挑選正確的病患族群接受正確的藥物治療,是現階段亟待解決的問題。因此,我們整合了RNA 轉錄體資料,藥物基因體資料以及病患臨床資料,來探討肺癌與COVID-19 肺纖維化 (PCPF) 的生物標記物和新療法。 長鍊非編碼RNA (lncRNA)在肺癌的功能並不完全清楚,我們希望利用基因關聯性網路分析,來探討哪些lncRNA可能會協同作用,並在肺癌中扮演重要角色。我們首先利用TCGA的肺腺癌(TCGA-LUAD)基因表現圖譜(gene expression profile)來構建 lncRNA 關聯網路。並利用關聯性網路中的模組(module)來模擬協同作用的lncRNA。我們發現四個lncRNA 模組表現量顯著地和預後及癌症特徵(cancer hallmarks)相關。我們接著建立由四個模組所組成的基因印記(gene signature)作為一新穎的lncRNA 生物標記。此研究探討了協同運作的lncRNA於肺腺癌的角色,並為日後的lncRNA研究提供了新的契機。 針對長鍊非編碼RNA(lncRNA)當作標靶來治療肺癌的藥物仍十分稀少。我們接著開發一生物網路演算法LncTx來計算藥物目標蛋白和 lncRNA 相關蛋白之間在蛋白質交互作用網路的接近度,期待能找尋靶定與存活相關的lncRNA來達肺癌治療效果的藥物。LncTx比較了不同加權方法在預測藥物適應症的表現,並證實了利用clustering coefficient作為加權權重的效果最佳,我們亦利用了不同的接近度量測方法將現有藥物重新分類,並證實了接近度小的藥物,是較有效的治療藥物。此結果有望在未來做更深入的分析,我們期待lncRNA可能作為新型藥物靶點,並將生物網路接近度之量測方法,作為藥物效度的另一參考。 COVID-19疫情的發展,導致許多感染者產生長久的後遺症,其中包括了肺纖維化(post-COVID-19 pulmonary fibrosis, PCPF)。我們整合了單細胞RNA分析以及許多計算方法來尋找藥物來治療 PCPF。我們發現了一個新的PCPF的基因表達印記,並確認其可作為 PCPF 的治療性生物標記。我們的方法亦找到了數個十分有潛力的治療藥物。我們的研究闡釋了生物網絡的鄰近性可以作為尋找PCPF治療性藥物的框架。 總結來說,網絡科學已被用於分析人類疾病背後的複雜系統。我們利用RNA 轉錄體和藥物基因體數據來探索肺癌和 PCPF 的潛在生物標標記和治療方法。我們的研究結果可作為網路醫學在臨床診斷和治療中的應用的基礎。zh_TW
dc.description.abstractThe clinical application of omic data is gradually gaining popularity. The prognosis of many diseases (such as cancer and COIVD-19) can benefit from multi-omics analysis; this information provides more precise treatment options which could prolong the survival and bring better life quality. Network biology utilizes the properties of graphs to comprehend the intricate mechanisms underlying biological phenomena. Lung cancer and post-COVID-19 pulmonary fibrosis (PCPF) are two prevailing chest diseases with a poor prognosis. With the introduction of new medications, treatment options are gradually expanding. How to accurately select the correct patient group to receive the correct drug treatment is a pressing issue that must be resolved. Therefore, we integrated RNA transcriptomics data, pharmacogenomic data, and patient clinical data to explore biomarkers and novel therapies for lung cancer and PCPF. The roles of co-regulated long non-coding RNAs (lncRNAs) in lung cancer have not been fully understood. Using the gene association network analysis, we aimed to determine which lncRNAs may co-appear and play a significant role in lung cancer. We first constructed the lncRNA association networks using the gene expression profile of lung adenocarcinoma from The Cancer Genome Atlas (TCGA). We found that the expression of four lncRNA modules was significantly correlated with prognosis and cancer hallmarks. We next established a lncRNA modular signature consisting of four modules as a novel lncRNA prognostic biomarker in lung cancer. This study investigates the role of co-regulated lncRNAs in lung adenocarcinoma and paves the way for lncRNA research in the future. Treatments that target long noncoding RNAs (lncRNAs) in lung cancer are still limited. We next developed a network-based algorithm, LncTx, to calculate the proximity between drug targets and lncRNA-related proteins on the protein-protein interaction network. LncTx compared the performance of various weighting methods for predicting drug indications and showed that the clustering coefficient could be a good weighting parameter. In addition, we reclassified existing drugs using several proximity measures and demonstrated that the drugs with smaller proximity are more effective compared to those with larger proximity. In the future, it is anticipated that the lncRNA may gain its popularity as novel drug targets, and network proximity can be used as an additional reference for the prediction of drug efficacy. As the outbreak of COVID-19, infected patients may suffer from the sequelae of COVID-19, including post-COVID-19 pulmonary fibrosis (PCPF). We integrated single-cell RNA analysis and various computational methods to repurpose drugs for PCPF treatment. We have revealed a novel gene expression signature as a theragnostic biomarker, and identified several potential medications for PCPF. Our study indicates that the single-cell analysis combining network-based proximity may be a novel approach to repurpose medications for PCPF. In conclusion, network science has been utilized to decipher the underlying complicated systems in human disorders. We leveraged single-cell/bulk RNA transcriptomes and pharmacogenomic data to identify potential biomarkers and therapeutics for lung cancer and PCPF. Our findings provide the foundation for the applications of network medicine in clinical diagnosis and therapy.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:22:11Z (GMT). No. of bitstreams: 1
U0001-1206202223013300.pdf: 21354380 bytes, checksum: 7bc4a75e7177f4f2da15a1a13f653405 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目 錄 誌謝……………………………………………………………………………….. i 中文摘要 ……...………………………………………………………………..... iii Abstract .…………………………………………………………………………… v Chapter 1 Cancer Computational Biology………………………………………… 1 1.1 Introduction to cancer data science……………………………………….. 1 1.2 Introduction to single-cell analysis ….………………………………….... 1 1.3 Introduction to network medicine…………………………...……………. 2 1.4 Challenges in cancer treatment: a clinical perspective……...……………. 2 Chapter 2 Identification of lung cancer prognostic biomarker using long non-coding RNA association networks …………………………………….………………..… 4 2. 1 Background……………………………………………………………….. 4 2.1.1 Lung cancer ……………………………………………………………. 4 2.1.2 LncRNAs in cancer ……………………………………………………. 4 2.1.3 LncRNA association networks in cancer ……………………………… 4 2.2 Aims of the study ………………………………………………………... 4 2.3 Materials and methods …………………………………………………... 5 2.3.1 Pre-processing of lncRNA and mRNA expression profiles……...……. 5 2.3.2. Identification of mRNAs associated with LncRNAs……...………….. 5 2.3.3 Constructing networks of lncRNA associations……...………………... 5 2.3.4 Analyses of survival and biomarker evaluation……...……………….... 6 2.3.5 Analyses of functional gene sets……...………………..…………….... 6 2.3.6 Supplementary link…...………………..……………............................ 7 2.4 Results……...………………..…………………………………………... 7 2.4.1 Analytical pipeline overview……...………………..…………………. 7 2.4.2 The establishment of lncRNA association networks……...…………... 7 2.4.3 The characteristics of the networks of lncRNA association…………... 8 2.4.4 LncRNAs inside modules have a strong association………………….. 8 2.4.5 LncRNA modules are related with a poor outcome in individuals with LUAD………………………………………………………………………. 8 2.4.6 The modular signature of lncRNAs as a potential prognostic biomarker in LUAD………………………………………………………………………. 9 2.4.7 The lncRNA modules are associated with cancer-related characteristics………………………………………………………………. 9 2.5 Discussions……………………………………………………………... 9 Chapter 3 A network-based drug reposition strategy targeting lung cancer prognostic lncRNAs 3.1 Background……………………………………………………………... 12 3.1.1 Roles of lncRNAs as novel targets for lung cancer treatments…..…... 12 3.1.2 Network pharmacology……………………………………………..... 12 3.2 Aims of the study……………………………………………………..... 13 3.3 Materials and methods………………………………………………..... 13 3.3.1 Sources of data and pre-processing………………………………...... 13 3.3.2 Analysis of survival and functional enrichment…………………....... 13 3.3.3 Calculation of proximity…………………………………………....... 14 3.3.4 Calculation of the edge weights…………………………………........ 15 3.3.5 Investigation of the roles of proximity in drug efficacy………........... 15 3.3.6 Supplementary link …...………………..……………......................... 16 3.4 Results…………………………………………………………….......... 16 3.4.1. An overview of the analytical workflow……………………........... 16 3.4.2. The prognostic lncRNAs are linked with cancer hallmarks. ............ 16 3.4.3. The weighted proximity measures have better performance in predicting the indication of anticancer drugs.……………………............ 16 3.4.4. Proximal drugs are more effective than distal drugs. ……............... 17 3.5 Discussions…………………………………………………................ 17 Chapter 4 An application of single-cell network-based drug repositioning strategy for post-COVID-19 pulmonary fibrosis. ………………………………................. 19 4.1 Background……………………………………………....................... 19 4.1.1. Post-COVID-19 fibrosis……………………………....................... 19 4.1.2. The application of network biology in PCPF drug repurposing….. 19 4.1.3. Roles of pathological fibroblasts in PCPF.…………...................... 19 4.2 Aims of the study……………………………………......................... 19 4.3 Materials and methods………………………………......................... 20 4.3.1 Construction and evaluation of the PCPF signature......................... 20 4.3.2 Support vector machine (SVM) …………………........................... 20 4.3.3 Principal component regression …………………........................... 20 4.3.4 Calculation of network-based proximity…………........................... 21 4.3.5 Supplementary link …...………………..……………..................... 22 4.4 Results…………………………………….......................................... 22 4.4.1. An overview of the analytical pipeline............................................ 22 4.4.2. Identifying PCPF-related cell clusters at the single-cell level......... 22 4.4.3. Comparison of pathological fibroblasts (PFBs) to other cell types …………………………………………………………………….. 22 4.4.4. Difference in PFB signature between the patients and healthy controls………………………………………………………………….. 23 4.4.5. The diagnosis and assessment of pulmonary fibrosis using the single-cell derived gene expression signature ………..………………… 23 4.4.6. Calculation of the proximity between drugs and the signature.….. 23 4.5 Discussions…………………………………………………………. 24 Chapter 5 Conclusions ………….. ………………………………................. 28 5.1 Summary……………………………………………......................... 28 5.2 Limitations……………………………………………...................... 28 5.3 Future outlooks……………………………………………............... 29 Reference…………………………………………………………………….. 63 Appendix…………………………………………………………………….. 70 圖目錄 Figure 1………………………………............................................................ 31 Figure 2………………………………............................................................ 32 Figure 3………………………………............................................................ 33 Figure 4………………………………............................................................ 35 Figure 5………………………………............................................................ 36 Figure 6………………………………............................................................ 37 Figure 7………………………………............................................................ 39 Figure 8………………………………............................................................ 41 Figure 9………………………………............................................................ 43 Figure 10………………………………...........................................................44 Figure 11………………………………...........................................................46 Figure 12………………………………...........................................................48 Figure 13………………………………...........................................................49 Figure 14………………………………...........................................................51 Figure 15………………………………...........................................................52 Figure 16………………………………...........................................................53 Figure 17………………………………...........................................................55 Figure 18………………………………...........................................................56 Figure 19………………………………...........................................................57 Figure 20………………………………...........................................................58 Figure 21………………………………...........................................................59 表目錄 Table 1………………………………..............................................................60 Table 2……………………………….............................................................. 61
dc.language.isoen
dc.subject 單細胞RNA定序zh_TW
dc.subject網路生物學zh_TW
dc.subject 肺癌zh_TW
dc.subject 新冠肺炎後肺纖維化zh_TW
dc.subject 長鍊非編碼核糖核酸zh_TW
dc.subject post-COVID-19 pulmonary fibrosis.en
dc.subject single-cell RNA sequencingen
dc.subject lung canceren
dc.subject long non-coding RNAen
dc.subjectNetwork biologyen
dc.title利用網路生物學與單細胞轉錄體學探索疾病生物標記與藥物重新定位之應用zh_TW
dc.titleExploring disease biomarkers and drug repurposing using network biology and single-cell transcriptomicsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor歐陽彥正(Yen-Jen Oyang)
dc.contributor.oralexamcommittee許家郎(Chia-Lang Hsu),陳倩瑜(Chien-Yu Chen),黃宣誠(Hsuan-Cheng Huang)
dc.subject.keyword網路生物學, 長鍊非編碼核糖核酸, 肺癌, 單細胞RNA定序, 新冠肺炎後肺纖維化,zh_TW
dc.subject.keywordNetwork biology, long non-coding RNA, lung cancer, single-cell RNA sequencing, post-COVID-19 pulmonary fibrosis.,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202200926
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-06-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
dc.date.embargo-lift2022-07-05-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-1206202223013300.pdf20.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved