請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85707完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳彥仰(Mike Y. Chen) | |
| dc.contributor.author | Po-Yu Chen | en |
| dc.contributor.author | 陳柏佑 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:22:03Z | - |
| dc.date.copyright | 2022-10-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-23 | |
| dc.identifier.citation | [1] G. Barnaby and A. Roudaut. Mantis: A scalable, lightweight and accessible architecture to build multiform force feedback systems. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST ’19, page 937–948, New York, NY, USA, 2019. Association for Computing Machinery. [2] J. Blake and H. B. Gurocak. Haptic glove with mr brakes for virtual reality. IEEE/ASME Transactions On Mechatronics, 14(5):606–615, 2009. [3] M. Bouzit, G. Burdea, G. Popescu, and R. Boian. The rutgers master ii-new design force-feedback glove. IEEE/ASME Transactions on mechatronics, 7(2):256–263, 2002. [4] F. Chinello, M. Malvezzi, C. Pacchierotti, and D. Prattichizzo. Design and develop- ment of a 3rrs wearable fingertip cutaneous device. In 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pages 293–298. IEEE, 2015. [5] I. Choi, H. Culbertson, M. R. Miller, A. Olwal, and S. Follmer. Grabity: A wearable haptic interface for simulating weight and grasping in virtual reality. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, page 119–130, New York, NY, USA, 2017. Association for Computing Machinery. [6] I. Choi and S. Follmer. Wolverine: A wearable haptic interface for grasping in vr. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16 Adjunct, page 117–119, New York, NY, USA, 2016. Association for Computing Machinery. [7] M. Gabardi, M. Solazzi, D. Leonardis, and A. Frisoli. A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features. In 2016 IEEE Haptics Symposium (HAPTICS), pages 140–146. IEEE, 2016. [8] N. M. Gamage, D. Ishtaweera, M. Weigel, and A. Withana. So predictable! con- tinuous 3d hand trajectory prediction in virtual reality. In The 34th Annual ACM Symposium on User Interface Software and Technology, UIST ’21, page 332–343, New York, NY, USA, 2021. Association for Computing Machinery. [9] X. Gu, Y. Zhang, W. Sun, Y. Bian, D. Zhou, and P. O. Kristensson. Dexmo: An inexpensive and lightweight mechanical exoskeleton for motion capture and force feedback in vr. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, page 1991–1995, New York, NY, USA, 2016. Association for Computing Machinery. [10] H. Hatze. Forces and duration of impact, and grip tightness during the tennis stroke. Med. Sci. Sports, 8(2):88–95, 1976. [11] S. Heo, C. Chung, G. Lee, and D. Wigdor. Thor’s hammer: An ungrounded force feedback device utilizing propeller-induced propulsive force. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1– 11, New York, NY, USA, 2018. Association for Computing Machinery. [12] M. Hirose, K. Hirota, T. Ogi, H. Yano, N. Kakehi, M. Saito, and M. Nakashige. Hapticgear: the development of a wearable force display system for immersive pro- jection displays. In Proceedings IEEE Virtual Reality 2001, pages 123–129. IEEE, 2001. [13] H.-P. Huang and Y.-F. Wei. Control of dexterous hand master with force feedback. In Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), volume 1, pages 687–692. IEEE, 1998. [14] S. Je, H. Lee, M. J. Kim, and A. Bianchi. Wind-blaster: A wearable propeller- based prototype that provides ungrounded force-feedback. In ACM SIGGRAPH 2018 Emerging Technologies, SIGGRAPH ’18, New York, NY, USA, 2018. Association for Computing Machinery. [15] M. Khamis, N. Schuster, C. George, and M. Pfeiffer. Electrocutscenes: Realistic haptic feedback in cutscenes of virtual reality games using electric muscle stimulation. In 25th ACM Symposium on Virtual Reality Software and Technology, VRST ’19, New York, NY, USA, 2019. Association for Computing Machinery. [16] P. Lopes, S. You, L.-P. Cheng, S. Marwecki, and P. Baudisch. Providing haptics to walls &; heavy objects in virtual reality by means of electrical muscle stimulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, page 1471–1482, New York, NY, USA, 2017. Association for Computing Machinery. [17] T. H. Massie, J. K. Salisbury, et al. The phantom haptic interface: A device for probing virtual objects. In Proceedings of the ASME winter annual meeting, symposium on haptic interfaces for virtual environment and teleoperator systems, volume 55, pages 295–300. Chicago, IL, Kluwer, 1994. [18] P. M. McGinnis. Biomechanics of Sport and exercise. Human Kinetics, 2020. [19] J. Murayama, L. Bougrila, Y. Luo, K. Akahane, S. Hasegawa, B. Hirsbrunner, and M. Sato. Spidar g&g: a two-handed haptic interface for bimanual vr interaction. In Proceedings of EuroHaptics, volume 2004, pages 138–146. Citeseer, 2004. [20] K. Nagai, S. Tanoue, K. Akahane, and M. Sato. Wearable 6-dof wrist haptic device ”spidar-w”. In SIGGRAPH Asia 2015 Haptic Media And Contents Design, SA ’15, New York, NY, USA, 2015. Association for Computing Machinery. [21] Novint. Novint falcon haptic device, 2006. [22] C. Pacchierotti, A. Tirmizi, and D. Prattichizzo. Improving transparency in teleoperation by means of cutaneous tactile force feedback. ACM Transactions on Applied Perception (TAP), 11(1):1–16, 2014. [23] J. Rekimoto. Traxion: A tactile interaction device with virtual force sensation. In ACM SIGGRAPH 2014 Emerging Technologies, UIST ’13, page 427–432, New York, NY, USA, 2013. Association for Computing Machinery. [24] F. W. Teck, H. Zhiyong, F. Farbiz, C. Jingting, C. C. Ling, and S. Rahardja. Un- grounded handheld device for simulating high-forces of ball impacts in virtual tennis. In SIGGRAPH Asia 2011 Emerging Technologies, SA ’11, New York, NY, USA, 2011. Association for Computing Machinery. [25] C.-Y. Tsai, I.-L. Tsai, C.-J. Lai, D. Chow, L. Wei, L.-P. Cheng, and M. Y. Chen. Airracket: Perceptual design of ungrounded, directional force feedback to improve virtual racket sports experiences. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022. Association for Computing Machinery. [26] H.-R. Tsai and B.-Y. Chen. Elastimpact: 2.5d multilevel instant impact using elasticity on head-mounted displays. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST ’19, page 429–437, New York, NY, USA, 2019. Association for Computing Machinery. [27] H.-R. Tsai, J. Rekimoto, and B.-Y. Chen. Elasticvr: Providing multilevel continuously-changing resistive force and instant impact using elasticity for vr. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–10, New York, NY, USA, 2019. Association for Computing Machinery. [28] D. Tsetserukou, S. Hosokawa, and K. Terashima. Linktouch: A wearable haptic device with five-bar linkage mechanism for presentation of two-dof force feedback at the fingerpad. In 2014 IEEE Haptics Symposium (HAPTICS), pages 307–312, 2014. [29] D. Tsetserukou, K. Sato, and S. Tachi. Exointerfaces: Novel exosceleton haptic interfaces for virtual reality, augmented sport and rehabilitation. In Proceedings of the 1st Augmented Human International Conference, AH ’10, New York, NY, USA, 2010. Association for Computing Machinery. [30] R. Q. Van Der Linde, P. Lammertse, E. Frederiksen, and B. Ruiter. The hapticmaster, a new high-performance haptic interface. Proc Eurohaptics, pages 1–5, 2002. [31] Y.-W. Wang, Y.-H. Lin, P.-S. Ku, Y. Miyatake, Y.-H. Mao, P. Y. Chen, C.-M. Tseng, and M. Y. Chen. Jetcontroller: High-speed ungrounded 3-dof force feedback controllers using air propulsion jets. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery. [32] R. Widenhorn. The physics of juggling a spinning ping-pong ball. American Journal of Physics, 84(12):936–94 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85707 | - |
| dc.description.abstract | 非接地式力回饋技術,像是噴氣推進或是螺旋槳,都可以在達到50~500毫秒以內產生4N力道的衝擊。然而,針對像是網球和打鼓這類的事件,現今的技術仍然只能產生相對於真實世界力道大小弱10~100倍,持續時間慢50~500倍的力回饋。為了解決這些限制,我們做了AirCharge,一個可以透過積聚空氣推進動量產生瞬間且具有方向性力的創新力回饋裝置。藉由安裝高壓空氣噴頭在旋轉臂上,AirCharge可以放大約20倍的衝擊力道同時達到和真實世界衝擊一樣的1毫秒的持續時間。為了支援高頻率的衝擊,我們利用反向傘齒輪箱設計出了一個雙旋轉臂結構來消除陀螺效應,並且頻率可以到達10赫茲。使用者體驗評估針對使用/不使用AirCharge的機構進行比較。實驗結果顯示,AirCharge可以有效的改善體驗真實度並且受到受測者青睞。 | zh_TW |
| dc.description.abstract | Ungrounded force feedback technologies, such as air jet propulsion and propellers, can achieve 4N in force magnitude and 50-500ms in impulse duration. However, for impact events such as tennis and drumming, current technologies are still 10-100x weaker in force magnitude and 50-500x slower in duration than real-world impact. To address these limitations, we present AirCharge, a novel haptic device that accumulates air propulsion momentum to generate an instantaneous, directional impact force. By mounting compressed air jets on rotating swingarms, AirCharge can amplify impact force magnitude by more than 20x while achieving the same 1-millisecond impulse duration as real-world impact events. To support high-frequency impact, we developed a double swingarm design using a reversing bevel gearbox that eliminates gyro effects and can achieve 10Hz. User experience evaluation comparing air jets with vs. without charging mechanism showed that AirCharge significantly improved realism and is preferred by participants. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:22:03Z (GMT). No. of bitstreams: 1 U0001-1309202220101600.pdf: 4731036 bytes, checksum: 439234720f4edce8de376f8db3284f23 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Contents 誌謝 ii 摘要 iii Abstract iv 1 Introduction 1 2 Related Work 4 2.1 Externally Grounded and Body-grounded Force Feedback . . . . . . . . 4 2.2 Ungrounded Force Feedback . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Air Propulsion-based Ungrounded Force Feedback . . . . . . . . . . . . 5 2.4 Force Feedback with Charging Mechanism . . . . . . . . . . . . . . . . 5 3 System Design and Implementation 6 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Single Swingarm Prototype . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Final System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.4 Pneumatic Control System . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Technical Evaluation 11 4.1 Experimental Setup and Design . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Effect of Nozzle Placement . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3 Peak Force Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.5 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5 User Experience Evaluation 16 5.1 Force Feedback Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.1 Baseline Force Feedback . . . . . . . . . . . . . . . . . . . . . . 16 5.1.2 AirCharge Force Feedback . . . . . . . . . . . . . . . . . . . . . 16 5.2 Apparatus and Participants . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.3 Study Design, Task, and Procedure . . . . . . . . . . . . . . . . . . . . . 17 5.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 Discussion and Future Work 20 6.1 Combine with Motion Prediction . . . . . . . . . . . . . . . . . . . . . . 20 6.2 Trade-off between realism and enjoyment . . . . . . . . . . . . . . . . . 20 6.3 Amplify Persistent Force Feedback . . . . . . . . . . . . . . . . . . . . . 20 6.4 AirCharge on Other Body Parts . . . . . . . . . . . . . . . . . . . . . . . 21 6.5 changing force contact properties . . . . . . . . . . . . . . . . . . . . . . 21 7 Conclusion 22 Bibliography 23 List of Figures 1.1 AirCharge can provide more realistic haptic feedback . . . . . . . . . . . 2 1.2 Our inspiration for AirCharge. . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 Physic background of a striking implement. . . . . . . . . . . . . . . . . 7 3.2 Single-swingarm prototype including compressed air nozzle, servo motor, and an electromagnetic clutch. . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Final system with dual-swingarm. . . . . . . . . . . . . . . . . . . . . . 9 3.4 Pneumatic control system. . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.1 Experimental setup for technical evaluation. . . . . . . . . . . . . . . . . 12 4.2 AirCharge’s force output. (A) Peak force under different preloaded angles and air pressure. (B) Example impact force curve under 15 to 90 degree preloaded angles at 0.2 to 0.6MPa. . . . . . . . . . . . . . . . . . . . . . 14 4.3 Response time under different preloaded angles and air pressure. . . . . . 15 5.1 User experiencing AirCharge, including (A)(B) two different types of weapons in a Half-life Alyx sample scene. . . . . . . . . . . . . . . . . . . . . . 18 5.2 The result of the user preference and the score. . . . . . . . . . . . . . . 19 | |
| dc.language.iso | en | |
| dc.subject | 非接地式力回饋 | zh_TW |
| dc.subject | 使用者體驗設計 | zh_TW |
| dc.subject | 衝擊感知 | zh_TW |
| dc.subject | 觸覺回饋設計 | zh_TW |
| dc.subject | impact perception | en |
| dc.subject | User Experience Design | en |
| dc.subject | Designing haptics | en |
| dc.subject | Ungrounded force feedback | en |
| dc.title | 空氣充能:通過積聚空氣推進動量來放大非接地衝擊力 | zh_TW |
| dc.title | AirCharge: Amplifying Ungrounded Impact Force by Accumulating Air Propulsion Momentum | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭龍磻(Lung-Pan Cheng),陳炳宇(Ping-Yu Chen),蔡欣叡(Hsin-Ray Tsai),余能豪(Neng-Hao Yu) | |
| dc.subject.keyword | 觸覺回饋設計,衝擊感知,使用者體驗設計,非接地式力回饋, | zh_TW |
| dc.subject.keyword | Designing haptics,impact perception,User Experience Design,Ungrounded force feedback, | en |
| dc.relation.page | 27 | |
| dc.identifier.doi | 10.6342/NTU202203369 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-07-01 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1309202220101600.pdf | 4.62 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
