Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85704
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅敏輝(Min-Hui Luo)
dc.contributor.authorBo-Yuan Chenen
dc.contributor.author陳博元zh_TW
dc.date.accessioned2023-03-19T23:21:59Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-06-17
dc.identifier.citation[1] Amante, C., and B. W. Eakins (2009). Etopo1 1 arc-minute global relief model: Procedures, data sources and analysis, NOAA Tech. Memo. NESDIS NGDC, 24, 1–19, doi:10.7289/V5C8276M [2] Bartholomé, E., and A. S. Belward (2005). GLC2000: A new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26(9), 1959–1977, doi:10.1080/01431160412331291297 [3] Climate Data Store, ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate (2017) [4] Eltahir, E. A. B. & Bras, R. L. (1996). Precipitation recycling. Rev. Geophys. 34, 367–378 [5] Findell, K.L., Eltahir, E.A.B. (1997). An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour. Res. 33 (4), 725–735 [6] Fitzharris, Blair (2001). Global energy and climate processes. In Sturman, A.P. and Spronken-Smith, R. A. (Ed.). The Physical Environment: A New Zealand Perspective (pp. 113-129). Melbourne: Oxford University Press [7] Froidevaux, P., Schlemmer, L., Schmidli, J., Langhans, W., & Schär, C. (2013). Influence of the background wind on the local soil moisture– precipitation feedback. Journal of the Atmospheric Sciences, 71(2), 782–799 [8] Garcia-Carreras, L., D. J. Parker, C. M. Taylor, C. E. Reeves, and J. G. Murphy (2010). Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res., 115, D03102, doi:10.1029/2009JD012811 [9] Garcia-Carreras, L., Parker, D. J. & Marsham, J. H. (2011). What is the mechanism for the modification of convective cloud distributions by land surfaceinduced flows? J. Atmos. Sci. 68, 619634 [10] Guillod, B. P., et al. (2015). Reconciling spatial and temporal soil moisture effects on afternoon rainfall, Nat. Commun., 6, doi:10.1038/ ncomms7443 [11] Holgate, C. M., Van Dijk, A. I. J. M., Evans, J. P., & Pitman, A. J. (2019). The importance of the one‐dimensional assumption in soil moisture ‐ Rainfall depth correlation at varying spatial scales. Journal of Geophysical Research: Atmospheres, 124, 2964–2975. https:// doi.org/10.1029/2018JD029762 [12] Hsu, H., M.-H. Lo, B. P. Guillod, D. G. Miralles, and S. Kumar (2017). Relation between precipitation location and antecedent/subsequent soil moisture spatial patterns, J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026042 [13] Kiehl, J. T., and K. E. Trenberth (1997): Earth's annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197-208 [14] Klein, C., and C. M. Taylor (2020). Dry soils can intensify mesoscale convective systems. Proc. Natl. Acad. Sci. USA, 117, 21 132–21 137, https://doi.org/10.1073/pnas.2007998117 [15] Koster, R.D., et al. (2004). Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 [16] Lee, J. M., Zhang, Y., & Klein, S. A. (2019). The effect of land surface heterogeneity and background wind on shallow cumulus clouds and the transition to deeper convection. Journal of the Atmospheric Sciences, 76(2), 401–419 [17] Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J. (2011). Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011 [18] Nicholson, S.E. (2015). Nicholson Evolution and current state of our understanding of the role played in the climate system by land surface processes in semi-arid regions Glob. Planet. Change, 133, pp. 201-222 [19] Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling (2010). Investigating soilmoisture-climate interactions in a changing climate: A review, Earth-Sci. Rev., 99(3–4), 125–161, doi:10.1016/j.earscirev.2010.02.004 [20] Taylor, C. M., F. Sad, and T. Lebel (1997). Interactions between the land surface and mesoscale rainfall variability during HAPEX-Sahel. Mon. Wea. Rev., 125, 2211–2227 [21] Taylor, C.M., Lebel, T. (1998). Observational evidence of persistent convective-scale rainfall patterns. Mon. Weather Rev. 126, 1597–1607 [22] Taylor, C.M., Ellis, R.J. (2006). Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett. 33, L03404 [23] Taylor, C. M., D. J. Parker, and P. P. Harris (2007). :An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34, L15801, doi:10.1029/2007GL030572 [24] Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe (2011). Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nat. Geosci., 4, 430–433, doi:10.1038/ngeo1173 [25] Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo (2012). Afternoon rain more likely over drier soils, Nature, 489, 423–426, doi:10.1038/nature11377 [26] T. Foken (2008). The energy balance closure problem: an overview Ecol. Appl., 18 (6), pp. 1351-1367 [27] Wei, J., Su, H. & Yang, ZL. (2016). Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe. Clim Dyn 46, 467–481 [28] Welty, J., Stillman, S., Zeng, X., & Santanello, J. (2020). Increased likelihood of appreciable afternoon rainfall over wetter or drier soils dependent upon atmospheric dynamic influence. Geophysical Research Letters, 47, e2020GL087779 [29] Zhou, S., Williams, A.P., Lintner, B.R. et al. (2021). Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Chang. 11, 38–44. https://doi.org/10.1038/s41558-020-00945-z
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85704-
dc.description.abstract由於地表條件作為提供大氣能量的主要來源,且與人類生活密切相關,自1990年代以降便受到越來越多關注。藉由衛星與模式資料,許多過去的研究指出下午降水傾向發生在早晨土壤比較濕的時候,但在土壤比較乾的地方。這很可能肇因於在乾土壤上空,地表溫度在空間上的異質性所激發的輻合、隨後發生的上升氣流、以及在這段較氣候值為潮濕的時期,較多水氣可供蒸發。近期研究進一步發現,當某些土壤條件滿足時,所謂的「空間上土壤溼度與降水之負回饋機制」會變成正回饋。然而,由於某些重要變數很難獲得全球尺度的觀測資料,諸如地表通量、溫濕度在高度上垂直的變化等,這兩種正負回饋機制在現實中是否僅在降水發生當天就被建立起,至今很少被討論。為了連結觀測與模式、並釐清前幾天大氣與土壤濕度的狀態, ERA5(ECMWF Reanalysis 5th Generation)再分析資料將被使用在本研究的大部分內容中。統計結果顯示無論是哪一種回饋機制,都在背景環境的發展中存在溫度及絕對溼度的正距平,這不是直接來自當地就是來自白天透過對流的傳送。兩正負回饋機制的差異在於:正回饋因為有較豐富的水氣,大氣會先被加濕並藉此累積能量;而負回饋的加濕與積能速度更快,卻僅發生在能透過強烈對流從周遭將水氣帶入的降水事件當天。這導致在事件當天早上的大氣加濕現象,正回饋從地表往上到大氣中;而負回饋則先從大氣開始加濕,再延伸至地表。雖然只使用一種再分析資料,且仍舊無法下因果的結論,本研究突顯在前幾天先備條件的重要性,並顯示很可能與在事件發生當天空間上的回饋機制有關。zh_TW
dc.description.abstractAs playing a critical feedback role to the atmosphere and closely relating to human life, land surface condition draws more and more attention since the 1990s. Based on satellite data and idealized model results, many previous studies stated that precipitation in the afternoon tends to occur when soil is wetter and where it is dryer. This is probably because of the convergence induced by spatial surface temperature heterogeneity and the subsequent updraft over dryer soil, as well as more available water vapor evaporated during wetter period. A recent study further shows that this negative “spatial soil moisture – precipitation feedback (spatial SM-P feedback)” may shift to positive when some soil conditions fulfill. Nevertheless, whether the development of both positive and negative spatial SM-P feedback emerges merely on the morning of the afternoon precipitation event or not is rarely discussed so far. It is because the lack of variables in observation that hard to be obtained globally, and because of the necessity of sufficient computational resources if using model. To act as a bridge between observation and model results, and figure out what had happened before the event day, ERA5, a state-of-the-art reanalysis data released only in recent years, is used in this study. Statistical results show that no matter the coupling is positive or negative, there is development of positive temperature and specific humidity anomaly, which can help destabilize the low atmosphere in the first place. The difference is that positive coupling moistens the air and accumulates energy which starts earlier due to the presence of richer soil moisture while the negative does it faster only on the event day with the help of fiercer convection that brings moisture in from the surroundings. This causes the moistening on the event day morning from the wet surface up to the atmosphere under positive cases while causing the moistening first happened in the atmosphere then down to the dry surface under negative ones. Though applying only one reanalysis data and not including firm causality, this study highlights the importance of the preconditions in the previous days. This may help improve the knowledge of spatial SM-P feedback, which may apply to forecasts on short to medium range, and climate change.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:21:59Z (GMT). No. of bitstreams: 1
U0001-1306202217073500.pdf: 2731267 bytes, checksum: 0bf2b567dd87d1a49763a424ffa8527f (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS vii LIST OF FIGURES viii Chapter 1 Introduction 1 Chapter 2 Methodology 4 Chapter 3 Results 7 3.1 Comparison between observation and reanalysis data 7 3.2 Temporal analysis 8 3.3 Spatial analysis 12 Chapter 4 Discussion 16 4.1 Positive spatial SM-P coupling 16 4.2 Negative spatial SM-P coupling 18 4.3 Comparing the preconditions 19 Chapter 5 Conclusion 21 REFERENCE 22
dc.language.isoen
dc.subject回饋機制zh_TW
dc.subject土壤溼度zh_TW
dc.subjectERA5zh_TW
dc.subject陸地大氣交互作用zh_TW
dc.subject午後降水zh_TW
dc.subjectSM-P feedbacken
dc.subjectLand-Atmosphere Interactionen
dc.subjectERA5en
dc.subjectSoil Moistureen
dc.subjectAfternoon Precipitationen
dc.title土壤溼度與降水耦合現象的先備條件zh_TW
dc.titleThe preconditions of soil moisture - precipitation coupling in ERA5en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游政谷(Zheng-Gu You),洪景山(Jing-Shan Hong),莊振義(Zhen-Yi Zhuang),陳奕穎(Yi-Ying Chen)
dc.subject.keyword陸地大氣交互作用,ERA5,土壤溼度,午後降水,回饋機制,zh_TW
dc.subject.keywordLand-Atmosphere Interaction,ERA5,Soil Moisture,Afternoon Precipitation,SM-P feedback,en
dc.relation.page39
dc.identifier.doi10.6342/NTU202200935
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-06-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
dc.date.embargo-lift2022-07-05-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
U0001-1306202217073500.pdf2.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved