請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85697完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈俊嚴(Chun-Yen Shen) | |
| dc.contributor.author | Che-Jui Chang | en |
| dc.contributor.author | 張哲睿 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:21:48Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-19 | |
| dc.identifier.citation | [1] N. Alon and J. H. Spencer, The Probabilistic Method, Wiley Publishing, 4th ed., 2016. [2] E. Bannai and E. Bannai, An upper bound for the cardinality of an s-distance subset in real Euclidean space, Combinatorica, 1 (1981), pp. 99–102. [3] M. Bateman and N. H. Katz, New bounds on cap sets, J. Amer. Math. Soc., 25 (2012), pp. 585–613. [4] M. Bennett, Occurrence of right angles in vector spaces over finite fields, European J. Combin., 70 (2018), pp. 155–163. [5] B. Bukh, Non-trivial solutions to a linear equation in integers, Acta Arith., 131 (2008), pp. 51–55. [6] E. Croot, V. F. Lev, and P. P. Pach, Progression-free sets in Zn4 are exponentially small, Ann. of Math. (2), 185 (2017), pp. 331–337. [7] Y. Edel, Extensions of generalized product caps, Des. Codes Cryptogr., 31 (2004), pp. 5–14. [8] J. S. Ellenberg and D. Gijswijt, On large subsets of Fnq with no three-term arithmetic progression, Ann. of Math. (2), 185 (2017), pp. 339–343. [9] C. Elsholtz and P. P. Pach, Caps and progression-free sets in Znm, Des. Codes Cryptogr., 88 (2020), pp. 2133–2170. [10] J. Fox, A new proof of the graph removal lemma, Ann. of Math. (2), 174 (2011), pp. 561–579. [11] P. Frankl, R. L. Graham, and V. Rödl, Quantitative theorems for regular systems of equations, J. Combin. Theory Ser. A, 47 (1988), pp. 246–261. [12] G. Ge and C. Shangguan, Maximum subsets of Fnq containing no right angles, J. Algebraic Combin., 52 (2020), pp. 455–460. [13] B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal., 15 (2005), pp. 340–376. [14] B. Green and T. Tao, An inverse theorem for the Gowers U3(G) norm, Proc. Edinb. Math. Soc. (2), 51 (2008), pp. 73–153. [15] B. Green and T. Tao, New bounds for Szemerédi’s theorem. I. Progressions of length 4 in finite field geometries, Proc. Lond. Math. Soc. (3), 98 (2009), pp. 365–392. [16] B. Green and T. Tao, New bounds for Szemerédi’s theorem. II. A new bound for r4(N), in Analytic number theory, Cambridge Univ. Press, Cambridge, 2009, pp. 180–204. [17] P. Halmos, Finite-Dimensional Vector Spaces, Springer, New York, NY, 2 ed., 1987. [18] R. Hancock and A. Treglown, On solution-free sets of integers, European J. Combin., 66 (2017), pp. 110–128. [19] R. Hancock and A. Treglown, On solution-free sets of integers II, Acta Arith., 180 (2017), pp. 15–33. [20] Y. Lin and J. Wolf, On subsets of Fnq containing no k-term progressions, European J. Combin., 31 (2010), pp. 1398–1403. [21] R. Meshulam, On subsets of finite abelian groups with no 3-term arithmetic progressions, J. Combin. Theory Ser. A, 71 (1995), pp. 168–172. [22] M. Mimura and N. Tokushige, Avoiding a shape, and the slice rank method for a system of equations. preprint on webpage at https://arxiv.org/abs/1909.10509 , 2019. [23] M. Mimura and N. Tokushige, Solving linear equations in a vector space over a finite field, Discrete Math., 344 (2021), pp. Paper No. 112603, 11. [24] E. Naslund, The partition rank of a tensor and k-right corners in Fnq , J. Combin. Theory Ser. A, 174 (2020), pp. 105190, 25. [25] I. Z. Ruzsa, Solving a linear equation in a set of integers. I, Acta Arith., 65 (1993), pp. 259–282. [26] I. Z. Ruzsa, Solving a linear equation in a set of integers. II, Acta Arith., 72 (1995), pp. 385–397. [27] I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Combinatorica, 18 (1976), pp. 939–945. [28] L. Sauermann, Finding solutions with distinct variables to systems of linear equations over Fp. preprint on webpage at https://arxiv.org/abs/2105.06863 , 2021. [29] W. Sawin and T. Tao, Notes on the “slice rank” of tensors, blog post, (2016). https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/. [30] E. Szemerédi, Regular partitions of graphs, in Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), vol. 260 of Colloq. Internat. CNRS, CNRS, Paris, 1978, pp. 399–401. [31] T. Tao, A symmetric formulation of the croot-lev-pach-ellenberg-gijswijt capset bound, blog post, (2016). https://terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound/. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85697 | - |
| dc.description.abstract | 片秩法 (Slice Rank) 是 Croot, Lev 以及 Pach 於2016年提出的一個新的組合數學工具,許多極值組合學當中的問題都透過了這個方法有了新的進展。在這篇論文中,我們會介紹片秩法及其應用,同時我們也會介紹劃分秩法 (Partition Rank) 及其應用。最後我們會利用片秩法以及隨機圖的定理證明直角移除定理。 | zh_TW |
| dc.description.abstract | Slice rank methods are new combinatorial tools introduced by Croot, Lev, and Pach in 2016. Many problems in extremal combinatorics are improved by applying the slice rank methods. In this thesis, we'll introduce the slice rank methods and their applications. Moreover, the partition rank and one of its applications are also introduced. Finally, we use slice rank methods and a random graph theorem to prove the right angles removal lemma. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:21:48Z (GMT). No. of bitstreams: 1 U0001-1506202216024100.pdf: 833589 bytes, checksum: 4571e391ffc9bdbfaa5c686e77ba8e7c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 1 Introduction p.1 1.1 Background p.1 1.2 General notations p.1 2 Slice Rank of Functions and Its Applications p.2 2.1 Slice rank of functions p.2 2.2 Application 1: Capset problem p.5 2.3 Application 2: Solutions of particular linear systems p.7 2.4 Application 3: Largest right-angle-free subsets of Fnp p.13 3 Slice Rank of Tensors p.16 3.1 Tensor product of vector spaces p.16 3.2 Slice rank of tensors p.19 4 Partition Rank p.27 4.1 Definitions and basic properties p.27 4.2 Distinctness indicator function p.31 4.3 Application 4: Largest k-right-corner-free subsets of Fnp p.35 5 Right Angle Removal Lemma p.43 5.1 Background p.43 5.2 Main result and its proof p.43 Acknowledgement p.49 References p.50 | |
| dc.language.iso | en | |
| dc.subject | 移除引理 | zh_TW |
| dc.subject | 片秩法 | zh_TW |
| dc.subject | 劃分秩法 | zh_TW |
| dc.subject | 極值組合 | zh_TW |
| dc.subject | 直角 | zh_TW |
| dc.subject | slice rank | en |
| dc.subject | removal lemma | en |
| dc.subject | right angle | en |
| dc.subject | extremal combinatorics | en |
| dc.subject | partition rank | en |
| dc.title | 片秩法及其應用 | zh_TW |
| dc.title | Slice Rank Methods and Their Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0001-9029-4687 | |
| dc.contributor.advisor-orcid | 沈俊嚴(0000-0003-0888-3007) | |
| dc.contributor.oralexamcommittee | 傅恆霖(Hung-Lin Fu),戴尚年(Shagnik Das) | |
| dc.contributor.oralexamcommittee-orcid | 傅恆霖(0000-0001-7218-3043) | |
| dc.subject.keyword | 片秩法,劃分秩法,極值組合,直角,移除引理, | zh_TW |
| dc.subject.keyword | slice rank,partition rank,extremal combinatorics,right angle,removal lemma, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU202200962 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-06-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1506202216024100.pdf | 814.05 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
