請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85694完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政達(Jeng-Da Chai) | |
| dc.contributor.author | CHI-CHUN CHEN | en |
| dc.contributor.author | 陳琦畯 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:21:43Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-17 | |
| dc.identifier.citation | [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. Grigorieva, S. Dubonos, and a. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005. [3] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, vol. 81, no. 1, p. 109, 2009. [4] A. K. Geim, “Graphene: status and prospects,” Science, vol. 324, no. 5934, pp. 1530–1534, 2009. [5] A. K. Geim and K. S. Novoselov, “The rise of graphene,” in Nanoscience and technology: a collection of reviews from nature journals, pp. 11–19, World Scientific, 2010. [6] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum hall effect and berry’s phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204, 2005. [7] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, et al., “Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor,” Nature Nanotechnology, vol. 3, no. 4, pp. 210–215, 2008. [8] L. Britnell, R. Gorbachev, R. Jalil, B. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. Katsnelson, L. Eaves, S. Morozov, et al., “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science, vol. 335, no. 6071, pp. 947–950, 2012. [9] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Letters, vol. 8, no. 10, pp. 3498–3502, 2008. [10] R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, “The role of graphene for electrochemical energy storage,” Nature Materials, vol. 14, no. 3, pp. 271–279, 2015. [11] M. Pumera, “Graphene-based nanomaterials for energy storage,” Energy & Environmental Science, vol. 4, no. 3, pp. 668–674, 2011. [12] A. Steane, “Quantum computing,” Reports on Progress in Physics, vol. 61, no. 2, p. 117, 1998. [13] I. A. Calafell, J. Cox, M. Radonjić, J. Saavedra, F. G. de Abajo, L. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” npj Quantum Information, vol. 5, no. 1, pp. 1–7, 2019. [14] J. Williams, L. DiCarlo, and C. Marcus, “Quantum hall effect in a gate-controlled pn junction of graphene,” Science, vol. 317, no. 5838, pp. 638–641, 2007. [15] D. Abanin and L. Levitov, “Quantized transport in graphene pn junctions in a magnetic field,” Science, vol. 317, no. 5838, pp. 641–643, 2007. [16] B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S. Levitov, and P. Kim, “Electronic transport and quantum hall effect in bipolar graphene p- n- p junctions,” Physical Review Letters, vol. 99, no. 16, p. 166804, 2007. [17] H. Chen, M. B. Müller, K. J. Gilmore, G. G. Wallace, and D. Li, “Mechanically strong, electrically conductive, and biocompatible graphene paper,” Advanced Materials, vol. 20, no. 18, pp. 3557–3561, 2008. [18] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Physical Review Letters, vol. 101, no. 19, p. 196405, 2008. [19] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Letters, vol. 8, no. 3, pp. 902–907, 2008. [20] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Edge state in graphene ribbons: Nanometer size effect and edge shape dependence,” Physical Review B, vol. 54, no. 24, p. 17954, 1996. [21] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, “Electronic and magnetic properties of nanographite ribbons,” Physical Review B, vol. 59, no. 12, p. 8271, 1999. [22] M. Ezawa, “Peculiar width dependence of the electronic properties of carbon nanoribbons,” Physical Review B, vol. 73, no. 4, p. 045432, 2006. [23] Y.-W. Son, M. L. Cohen, and S. G. Louie, “Energy gaps in graphene nanoribbons,” Physical Review Letters, vol. 97, no. 21, p. 216803, 2006. [24] M. Bacon, S. J. Bradley, and T. Nann, “Graphene quantum dots,” Particle & Particle Systems Characterization, vol. 31, no. 4, pp. 415–428, 2014. [25] J. Fernández-Rossier and J. J. Palacios, “Magnetism in graphene nanoislands,” Physical Review Letters, vol. 99, no. 17, p. 177204, 2007. [26] D. Bahamon, A. Pereira, and P. Schulz, “Inner and outer edge states in graphene rings: A numerical investigation,” Physical Review B, vol. 79, no. 12, p. 125414, 2009. [27] S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S. Sobhani, L. M. Vandersypen, and A. F. Morpurgo, “Observation of aharonov-bohm conductance oscillations in a graphene ring,” Physical Review B, vol. 77, no. 8, p. 085413, 2008. [28] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, “Chaotic dirac billiard in graphene quantum dots,” Science, vol. 320, no. 5874, pp. 356–358, 2008. [29] O. Hod, V. Barone, and G. E. Scuseria, “Half-metallic graphene nanodots: A comprehensive first-principles theoretical study,” Physical Review B, vol. 77, no. 3, p. 035411, 2008. [30] P. Hewageegana and V. Apalkov, “Electron localization in graphene quantum dots,” Physical Review B, vol. 77, no. 24, p. 245426, 2008. [31] C. Downing, D. Stone, and M. Portnoi, “Zero-energy states in graphene quantum dots and rings,” Physical Review B, vol. 84, no. 15, p. 155437, 2011. [32] P. Potasz, A. Güçlü, O. Voznyy, J. Folk, and P. Hawrylak, “Electronic and magnetic properties of triangular graphene quantum rings,” Physical Review B, vol. 83, no. 17, p. 174441, 2011. [33] D. Da Costa, A. Chaves, M. Zarenia, J. Pereira Jr, G. Farias, and F. Peeters, “Geometry and edge effects on the energy levels of graphene quantum rings: A comparison between tight-binding and simplified dirac models,” Physical Review B, vol. 89, no. 7, p. 075418, 2014. [34] M. El Khatib, S. Evangelisti, T. Leininger, and G. L. Bendazzoli, “A theoretical study of closed polyacene structures,” Physical Chemistry Chemical Physics, vol. 14, no. 45, pp. 15666–15676, 2012. [35] P. Recher, B. Trauzettel, A. Rycerz, Y. M. Blanter, C. Beenakker, and A. Morpurgo, “Aharonov-bohm effect and broken valley degeneracy in graphene rings,” Physical Review B, vol. 76, no. 23, p. 235404, 2007. [36] J. Schelter, P. Recher, and B. Trauzettel, “The aharonov–bohm effect in graphene rings,” Solid State Communications, vol. 152, no. 15, pp. 1411–1419, 2012. [37] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, vol. 136, no. 3B, p. B864, 1964. [38] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4A, p. A1133, 1965. [39] J. Hachmann, J. J. Dorando, M. Avilés, and G. K.-L. Chan, “The radical character of the acenes: a density matrix renormalization group study,” The Journal of Chemical Physics, vol. 127, no. 13, p. 134309, 2007. [40] G. Gidofalvi and D. A. Mazziotti, “Active-space two-electron reduced-densitymatrix method: Complete active-space calculations without diagonalization of the nelectron hamiltonian,” The Journal of Chemical Physics, vol. 129, no. 13, p. 134108, 2008. [41] W. Mizukami, Y. Kurashige, and T. Yanai, “More π electrons make a difference: emergence of many radicals on graphene nanoribbons studied by ab initio dmrg theory,” Journal of chemical theory and computation, vol. 9, no. 1, pp. 401–407, 2013. [42] J.-D. Chai, “Density functional theory with fractional orbital occupations,” The Journal of Chemical Physics, vol. 136, no. 15, p. 154104, 2012. [43] J.-D. Chai, “Thermally-assisted-occupation density functional theory withgeneralized-gradient approximations,” The Journal of Chemical Physics, vol. 140, no. 18, p. 18A521, 2014. [44] J.-D. Chai, “Role of exact exchange in thermally-assisted-occupation density functional theory: A proposal of new hybrid schemes,” The Journal of Chemical Physics, vol. 146, no. 4, p. 044102, 2017. [45] F. Xuan, J.-D. Chai, and H. Su, “Local density approximation for the Short-Range exchange free energy functional,” ACS Omega, vol. 4, pp. 7675–7683, Apr. 2019. [46] C.-Y. Lin, K. Hui, J.-H. Chung, and J.-D. Chai, “Self-consistent determination of the fictitious temperature in thermally-assisted-occupation density functional theory,” RSC Adv., vol. 7, pp. 50496–50507, 2017. [47] C.-S. Wu and J.-D. Chai, “Electronic properties of zigzag graphene nanoribbons studied by TAO-DFT,” J. Chem. Theory Comput., vol. 11, pp. 2003–2011, May 2015. [48] S. Seenithurai and J.-D. Chai, “Effect of li adsorption on the electronic and hydrogen storage properties of acenes: A dispersion-corrected tao-dft study,” Scientific Reports, vol. 6, p. 33081, Sep 2016. [49] C.-S. Wu, P.-Y. Lee, and J.-D. Chai, “Electronic properties of cyclacenes from TAODFT,” Scientific Reports, vol. 6, p. 37249, Nov 2016. [50] C.-N. Yeh, C. Wu, H. Su, and J.-D. Chai, “Electronic properties of the coronene series from thermally-assisted-occupation density functional theory,” RSC Adv., vol. 8, pp. 34350–34358, 2018. [51] J.-H. Chung and J.-D. Chai, “Electronic properties of möbius cyclacenes studied by thermally-assisted-occupation density functional theory,” Scientific Reports, vol. 9, p. 2907, Feb 2019. [52] S. Seenithurai and J.-D. Chai, “Electronic properties of linear and cyclic boron nanoribbons from thermally-assisted-occupation density functional theory,” Scientific Reports, vol. 9, p. 12139, Aug 2019. [53] Q. Deng and J.-D. Chai, “Electronic properties of triangle-shaped graphene nanoflakes from TAO-DFT,” ACS Omega, vol. 4, pp. 14202–14210, Sep 2019. [54] H.-J. Huang, S. Seenithurai, and J.-D. Chai, “TAO-DFT study on the electronic properties of diamond-shaped graphene nanoflakes,” Nanomaterials, vol. 10, no. 6, 2020. [55] S. Seenithurai and J.-D. Chai, “Electronic properties of carbon nanobelts predicted by thermally-assisted-occupation DFT,” Nanomaterials, vol. 11, no. 9, 2021. [56] S. Li and J.-D. Chai, “TAO-DFT-based ab initio molecular dynamics,” Frontiers in Chemistry, vol. 8, p. 916, 2020. [57] M. W. Hanson-Heine, “Static correlation in vibrational frequencies studied using thermally-assisted-occupation density functional theory,” Chemical Physics Letters, vol. 739, p. 137012, 2020. [58] P. A. M. Dirac, “Note on exchange phenomena in the thomas atom,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 26, no. 3, p. 376–385, 1930. [59] Y. Shao, Z. Gan, E. Epifanovsky, A. T. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. W. III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. D. Jr., H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. Hanson-Heine, P. H. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. Chan, D. M. Chipman, C. J. Cramer, W. A. G. III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. S. III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. V. Voorhis, J. M. Herbert, A. I. Krylov, P. M. Gill, and M. Head-Gordon, “Advances in molecular quantum chemistry contained in the q-chem 4 program package,” Molecular Physics, vol. 113, no. 2, pp. 184–215, 2015. [60] E. A. Carter and W. A. Goddard, “Relation between singlet-triplet gaps and bond energies,” The Journal of Physical Chemistry, vol. 90, pp. 998–1001, Mar 1986. [61] Y. Su, X. Wang, L. Wang, Z. Zhang, X. Wang, Y. Song, and P. P. Power, “Thermally controlling the singlet–triplet energy gap of a diradical in the solid state,” Chem. Sci., vol. 7, pp. 6514–6518, 2016. [62] J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. Gross, M. Scheffler, G. E. Scuseria, T. M. Henderson, I. Y. Zhang, A. Ruzsinszky, et al., “Understanding band gaps of solids in generalized kohn–sham theory,” Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 11, pp. 2801–2806, 2017. [63] L. Brey and H. Fertig, “Electronic states of graphene nanoribbons studied with the dirac equation,” Physical Review B, vol. 73, no. 23, p. 235411, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85694 | - |
| dc.description.abstract | 由於傳統科恩-沈密度泛函理論(Kohn-Sham Density functional theory) 在計算強關聯電子系統上並無法達到令人滿意的表現,有許多研究試圖尋找更有效的計算方法。而在多參考組態相互作用方法(multi-reference configuration interaction method) 的架構下,雖然能解決強關聯電子系統問題,但卻由於計算複雜度過大,導致只能計算相對小的系統,在實際應用上非常有限。熱輔助佔據密度泛函理論因此被提出以解決此問題,並由於其計算複雜度與柯恩-沈理論相近,在相同計算資源下,我們能獲得更加可信的結果。在此篇論文中,我們以局域密度近似(local density approximation) 下的熱輔助佔據密度泛函理論計算六角形量子石墨烯環之電子結構隨尺寸增大之特性變化(邊長n=3-15)。我們發現其在計算上能夠保持自旋對稱性,改善科恩-沈對稱性破壞的問題,並在電子游離能與電子親和力的計算上,完成了科恩-沈方法無法完成的計算。我們數值計算的結果預測六邊形石墨烯環的基態為單重態,並有隨尺度增大而減小的單重-三重態能階差,游離能,與隨尺度增大的電子親和能和馮紐曼熵。我們也觀察到此系統由小尺度的非自由基特性逐漸過渡到大尺度的自由基特性。 | zh_TW |
| dc.description.abstract | Reliable prediction of the ground state electronic properties of graphene nano-systems has been very challenging for conventional computational methods such as the popular Kohn-Sham Density functional theory (KS-DFT), due to the presence of strong static correlation effect. Thermally-assisted-occupation density functional theory (TAO-DFT) has thus been developed to tackle this problem. TAO-DFT has similar computational cost to KS-DFT, but is shown to improve KS-DFT for multi-reference systems even at simplest level local density approximation (LDA), and found to be in good agreement with the existing experimental and high-level ab initio data for several systems. Inspired from previous work on Aharonov-Bohm (AB) effect in graphene quantum rings (GQRs), in this work we numerically study electronic properties of zigzag-edged unit-width hexagonal graphene quantum rings (HGQRs) as a function of size (n=3-15) using TAO-DFT at LDA level, finding monotonic decreasing singlet-triplet gaps, vertical ionization potentials, and fundamental gaps with size, while monotonic increasing vertical electron affinities and symmetrized von Neumann entropy. We demonstrate n-HGQRs show a smooth transition from non-radical to poly-radical nature as size increases. We further found that TAO orbital occupation numbers (TOONs) shows a six-level grouping behavior, which might arise from its six-fold rotational symmetry. However, this grouping is not not seen in previous TAO-DFT calculation on hexagonal graphene nanoflake because of the strong coupling between each segment. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:21:43Z (GMT). No. of bitstreams: 1 U0001-1506202214064300.pdf: 13428390 bytes, checksum: ccbae83729995bf684be369520e4a05f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgements 2 摘要3 Abstract 4 Contents 6 List of Figures 8 List of Tables 12 Denotation 13 Chapter 1 Introduction 1 1.1 Graphene and graphene quantum ring . . . . . . . . . . . . . . . . . 1 1.2 TAO-DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Method 5 2.1 Origin of density functional theory . . . . . . . . . . . . . . . . . . . 5 2.2 Kohn-Sham density functional theory . . . . . . . . . . . . . . . . . 6 2.3 Thermally-assisted-occupation density functional theory . . . . . . . 10 2.3.1 Local density approximation . . . . . . . . . . . . . . . . . . . . . 15 Chapter 3 Computational details 17 Chapter 4 Results and discussion 18 4.1 Singlet-triplet gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Vertical ionization potential/Electron affinity and associated fundamental gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Symmetrized von Neumann entropy . . . . . . . . . . . . . . . . . . 21 4.4 Active TAO orbital occupation numbers . . . . . . . . . . . . . . . . 22 4.5 Real space orbital representation . . . . . . . . . . . . . . . . . . . . 23 4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter 5 Conclusion 38 References 40 Appendix A — Restricted and unrestricted energy 49 Appendix B — TOONS for N-1/N+1 systems 51 Appendix C — TOONs 55 Appendix D — TAO orbital energy 58 Appendix E — Real space active orbitals 59 | |
| dc.language.iso | en | |
| dc.subject | 熱輔助佔據密度泛函理論 | zh_TW |
| dc.subject | 強關聯系統 | zh_TW |
| dc.subject | 六角形石磨烯奈米環 | zh_TW |
| dc.subject | strongly correlated system | en |
| dc.subject | thermally-assisted-occupation density functional theory | en |
| dc.subject | hexagonal qraphene quantum ring | en |
| dc.title | 以熱輔助佔據密度泛函理論探討六角形奈米石墨烯環之電子結構 | zh_TW |
| dc.title | TAO-DFT Investigation in Electronic Properties of unit-width Hexagonal Graphene Quantum Rings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 金必耀(Bih-Yaw Jin),薛宏中(Hung-chung Hsueh) | |
| dc.subject.keyword | 熱輔助佔據密度泛函理論,六角形石磨烯奈米環,強關聯系統, | zh_TW |
| dc.subject.keyword | thermally-assisted-occupation density functional theory,hexagonal qraphene quantum ring,strongly correlated system, | en |
| dc.relation.page | 62 | |
| dc.identifier.doi | 10.6342/NTU202200958 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-06-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1506202214064300.pdf | 13.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
