請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85684完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊孝友 | zh_TW |
| dc.contributor.advisor | Hsiao-Yu Yang | en |
| dc.contributor.author | 鍾亞婷 | zh_TW |
| dc.contributor.author | Ya-Ting Chung | en |
| dc.date.accessioned | 2023-03-19T23:21:28Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2022-10-17 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. UN. Sustainable Development Goals. Available at: https://sdgs.un.org/goals. Accessed on 19, July, 2021.
2. Rocklöv J, Dubrow R. Climate change: an enduring challenge for vector-borne disease prevention and control. Nature Immunology 2020;21:479-83. doi: 10.1038/s41590-020-0648-y. 3. WHO. GLOBAL VECTOR CONTROL RESPONSE 2017–2030. World Health Organization, 2017. 4. Luh DL, Liu CC, Luo YR, Chen SC. Economic cost and burden of dengue during epidemics and non-epidemic years in Taiwan. J Infect Public Health 2018;11:215-23. doi: 10.1016/j.jiph.2017.07.021. 5. Chen W-J. Dengue outbreaks and the geographic distribution of dengue vectors in Taiwan: A 20-year epidemiological analysis. Biomedical Journal 2018;41:283-9. doi: https://doi.org/10.1016/j.bj.2018.06.002. 6. NASA. Global Temperature. Available at: https://climate.nasa.gov/vital-signs/global-temperature/. Accessed on 22, June, 2022. 7. NASA. Sea Level. Available at: https://climate.nasa.gov/vital-signs/sea-level/. Accessed on 22, June, 2022. 8. WHO. Climate Change. Available at: https://www.afro.who.int/health-topics/climate-change. Accessed on 22, June, 2022. 9. 吳宜昭、陳永明、朱容練:台灣氣候變遷趨勢。國研科技 2010:40-6. doi: 10.29659/NARLQ.201001.0006. 10. WHO. Climate change and health. Available at: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health. Accessed on 22, June, 2022. 11. Zhang R, Tang X, Liu J, et al. From concept to action: a united, holistic and One Health approach to respond to the climate change crisis. Infectious Diseases of Poverty 2022;11:17. doi: 10.1186/s40249-022-00941-9. 12. WHO. Vector-borne diseases. Available at: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. Accessed on 25, July, 2021. 13. Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ 2000;78:1136-47. 14. 衛生福利部疾病管制署:登革熱。Available at: https://www.cdc.gov.tw/Disease/SubIndex/WYbKe3aE7LiY5gb-eA8PBw. Accessed on 13 July, 2021. 15. Deng S-Q, Yang X, Wei Y, Chen J-T, Wang X-J, Peng H-J. A Review on Dengue Vaccine Development. Vaccines (Basel) 2020;8:63. doi: 10.3390/vaccines8010063. 16. World Health Organization. Regional Office for South-East A. Comprehensive Guideline for Prevention and Control of Dengue and Dengue Haemorrhagic Fever. Revised and expanded edition. New Delhi: WHO Regional Office for South-East Asia. 2011. 17. WHO. Dengue and Severe Dengue. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Accessed on 13 July, 2021. 18. CDC. Mosquito-borne Transmission. Available at: https://www.cdc.gov/dengue/training/cme/ccm/page45915.html. Accessed on 14 July, 2021. 19. 衛生福利部疾病管制署:登革熱/屈公病防治工作指引(第十五版)。衛生福利部疾病管制署. 2022. 20. 陳易呈、陳彥圻、鄧華真、舒佩芸、李淑英:埃及斑蚊及白線斑蚊之生態特性及傳播病毒能力的文獻回顧。疫情報導 2019;35:172-86。doi: 10.6524/EB.202012_36(23).0001 21. Morin CW, Comrie AC, Ernst K. Climate and dengue transmission: evidence and implications. Environ Health Perspect 2013;121:1264-72. doi: 10.1289/ehp.1306556. 22. Iwamura T, Guzman-Holst A, Murray KA. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nature Communications 2020;11:2130. doi: 10.1038/s41467-020-16010-4. 23. Yang B, Borgert BA, Alto BW, et al. Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. PLoS neglected tropical diseases 2021;15:e0009063-e. doi: 10.1371/journal.pntd.0009063. 24. Rohani A, Wong YC, Zamre I, Lee HL, Zurainee MN. The effect of extrinsic incubation temperature on development of dengue serotype 2 and 4 viruses in Aedes aegypti (L.). Southeast Asian J Trop Med Public Health 2009;40:942-50. 25. Lai Y-H. The climatic factors affecting dengue fever outbreaks in southern Taiwan: an application of symbolic data analysis. Biomed Eng Online 2018;17:148-. doi: 10.1186/s12938-018-0575-4. 26. 溫在弘、陳慈昕:氣候變遷下的登革熱擴散風險與調適策略。國立臺灣大學全球變遷研究中心、國立臺灣大學風險社會與政策研究中心。106年度。 27. Rosa-Freitas MG, Schreiber KV, Tsouris P, Weimann ET, Luitgards-Moura JF. Associations between dengue and combinations of weather factors in a city in the Brazilian Amazon. Rev Panam Salud Publica 2006;20:256-67. doi: 10.1590/s1020-49892006000900006. 28. Gui H, Gwee S, Koh J, Pang J. Weather Factors Associated with Reduced Risk of Dengue Transmission in an Urbanized Tropical City. Int J Environ Res Public Health 2021;19. doi: 10.3390/ijerph19010339. 29. Xiang J, Hansen A, Liu Q, et al. Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005–2014. Environmental Research 2017;153:17-26. doi: https://doi.org/10.1016/j.envres.2016.11.009. 30. Benedum CM, Seidahmed OME, Eltahir EAB, Markuzon N. Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLoS neglected tropical diseases 2018;12:e0006935-e. doi: 10.1371/journal.pntd.0006935. 31. Lowe R, Lee SA, O'Reilly KM, et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. The Lancet Planetary Health 2021;5:e209-e19. doi: 10.1016/S2542-5196(20)30292-8. 32. Chien L-C, Yu H-L. Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence. Environment International 2014;73:46-56. doi: https://doi.org/10.1016/j.envint.2014.06.018. 33. Chuang TW, Chaves LF, Chen PJ. Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. PLoS One 2017;12:e0178698. doi: 10.1371/journal.pone.0178698. 34. Chen SC, Liao CM, Chio CP, Chou HH, You SH, Cheng YH. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. Sci Total Environ 2010;408:4069-75. doi: 10.1016/j.scitotenv.2010.05.021. 35. Yu H-L, Yang S-J, Yen H-J, Christakos G. A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stochastic Environmental Research and Risk Assessment 2011;25:485-94. doi: 10.1007/s00477-010-0417-9. 36. Huang X, Clements ACA, Williams G, Milinovich G, Hu W. A threshold analysis of dengue transmission in terms of weather variables and imported dengue cases in Australia. Emerging Microbes & Infections 2013;2:1-7. doi: 10.1038/emi.2013.85. 37. Tran B-L, Tseng W-C, Chen C-C, Liao S-Y. Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan. Int J Environ Res Public Health 2020;17:1392. doi: 10.3390/ijerph17041392. 38. 衛生福利部疾病管制署:登革熱病媒蚊指數。Available at: https://www.cdc.gov.tw/Category/ListContent/0BhRQWTf3QSkAys2TE_qQg?uaid=BGrMYW2LrvhzFjT5xxgrPw. Accessed on 16, September, 2022. 39. Costa RLAUBGHCPDDAUdRJRLAUdSSFD. Gap Filling and Quality Control Applied to Meteorological Variables Measured in the Northeast Region of Brazil2021. 40. Muggeo VMR, Atkins DC, Gallop RJ, Dimidjian S. Segmented mixed models with random changepoints: a maximum likelihood approach with application to treatment for depression study. Statistical Modelling 2014;14:293-313. doi: 10.1177/1471082X13504721. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85684 | - |
| dc.description.abstract | 氣候變遷對全球環境與公共衛生帶來多層面的衝擊,包含蟲媒傳染病的傳播與擴散。登革熱為全球盛行蟲媒傳染病之一,主要由白線斑蚊與埃及斑蚊傳播。我國亦屬於登革熱盛行區域,曾數次於本島爆發大規模疫情,過去本土疫情主要爆發於南臺灣地區,然而近年中部與北部地區爆發頻率亦逐漸密集。目前已知氣象因子與空氣污染對於病媒的分布與傳播能力相關,然而氣候變遷如何影響各地登革熱風險與流行趨勢仍有待深入研究。
本研究納入我國22縣市1998至2020年間登革熱病例數、布氏指數、氣象與空氣污染物每日資料,並將累計本土病例數超過百例的8個縣市納入分析。以皮爾森相關係數分析(Pearson correlation coefficient analysis)觀察各項變數的共變性,並透過機器學習建造隨機森林模型(random forest model)將變數分組進行影響力排序,並從中挑選各縣市的重要變數進行延遲效應與閾值效應的分析。為了描述變數對本土登革熱或布氏指數的延遲效應與閾值效應,以非線性遞延分配模型(distributed lag non-linear model,DLNM)進行風險的延遲趨勢觀察,再進一步將其降維成暴露-延遲累加風險資料,以分段迴歸模型(segmented regression model)與線性迴歸模型進行比較,觀察是否存在有效影響模型擬合度的斷點,此斷點即為閾值,而斷點前後區段的斜率差異即為變數對風險的閾值影響。 研究結果顯示,相較於本土登革熱,氣溫指標對布氏指數的影響力與地理位置關聯性較明確,而在納入分析的8個縣市當中,相對濕度對本土登革熱影響力高於累積雨量的縣市有6個、對布氏指數影響力高於累積雨量的縣市則有7個,顯示相對濕度在臺灣對登革熱的影響力普遍高於累積雨量。氣溫對於各縣市本土登革熱的風險影響約在20天後最為顯著,此延遲狀況符合登革熱傳播周期當中兩個相關病例之間的平均間隔日數。相對濕度對本土登革熱與布氏指數的風險影響較雨量穩定,推測為每日資料尺度使雨量分布懸殊導致。無論是影響力排序或延遲效應,空氣污染物對登革熱的影響在各縣市皆存在歧異,推測與大氣中的組成分布有關。除了氣溫與相對濕度對部分縣市的布氏指數可用線性關係描述之外,所有氣象因子與空氣污染物對各縣市本土登革熱與布氏指數的延遲累加風險皆存在閾值效應。 在全球氣候變遷的趨勢之下,蟲媒傳染病的流行與擴散為當今公共衛生重要議題;我國地處熱帶與亞熱帶交界,相關應對亦刻不容緩。除了原本已知的氣象因子之外,本研究確認空氣污染物的種類對我國不同縣市登革熱風險的影響有所差異,亦針對登革熱流行與病媒風險進行比較,可供後續相關研究參考。 | zh_TW |
| dc.description.abstract | The impacts of global climate change on the public health are in myriads of ways, include the transmission and spread of vector-borne diseases. Dengue fever is one of the most popular vector-borne diseases worldwide, which is mainly transmitted by Aedes aegypti and Aedes albopictus. Taiwan is one of the prevalent regions of dengue, and there were several outbreaks in the past already. The local epidemics mainly broke out in the southern of Taiwan, but the frequency also grew up in the northern region in recent years. The associations between the meteorological factors and air pollutants to dengue were defined, but the influences of climate change to the risk and epidemic trend of dengue is still not clarified.
We used the daily data of indigenous dengue cases, Breteau index (BI), meteorological factors and air pollutants of 22 cities and counties in Taiwan during 1998‒2020, and the eight cities and counties with over 100 cumulative indigenous dengue cases were included in the analysis. We evaluated the covariant between each variable with Pearson correlation coefficient analysis, and arranged the importances of the sorted variables with random forest model. To describe the delay effect and threshold effect of variables to dengue and BI, we used the distributed lag non-linear model (DLNM) to investigate the trend of relative risk (RR) in different lag periods, and reduced the dimensions of the outputs to get the data of exposure-overall cumulative RR. We used the segmented regression model to compared with the linear regression model and evaluated the break points, which were the threshold of the associations between variables and dengue. The effects of temperature to BI were obvious associated with the geographical locations than the effects to dengue, while the effects of relative humidity to both dengue and BI were common than the effects of rainfall. The delayed risk of temperature to dengue appeared at about 20 days later, while the length of period was also the average value of the interval length between two associated dengue cases. The effects of relative humidity to the risk of dengue and BI were stable than the effects of rainfall, and we surmised it was caused by the parameter scale of daily data. There were both differences between the air pollutants with the arrangements of importances to dengue and the delay effect of the risk, and we surmised it was caused by the distribution of composition in air. Except the associations between the temperature or relative humidity to risk of BI in few cities or counties could be described with linear regression, all of the associations between the variables to risk of dengue or BI included the threshold effect. Under the global climate change, the epidemic and spread out of vector-borne diseases became the important issue of One Health. We investigated the differences of delay effects and threshold effects of the risk caused by meteorological factors and air pollutants to dengue and the vector in difference regions of Taiwan, and it may be valuable to future studies. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:21:28Z (GMT). No. of bitstreams: 1 U0001-0807202210594600.pdf: 12319548 bytes, checksum: 0496b3b4d260576e273ba1071cbe272e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract v 目錄 viii 圖目錄 xiii 表目錄 xvii 第一章 導論 1 第一節 研究目的與研究問題 1 第二節 文獻探討 2 (一)氣候變遷 2 一、氣候變遷與公共衛生 2 二、氣候變遷與蟲媒傳染病 3 (二)登革熱 4 一、登革熱簡介 4 二、登革熱的病媒特性與監測指標 5 (三)氣候變遷對登革熱之影響 6 一、影響層面與因子 6 二、氣象因子對登革熱的延遲效應 7 三、氣象因子對登革熱的閾值效應 8 第三節 研究架構 9 第四節 實習單位特色與簡介 10 第二章 方法 11 第一節 資料處理 11 (一)資料範圍 11 (二)資料來源與格式 11 一、登革熱病例資料 11 二、布氏指數資料 11 三、氣象與空氣污染物資料 11 四、人口密度資料 12 五、行政區界線資料 12 (三)資料彙整與清理 13 一、登革熱病例資料整理 13 二、布氏指數資料整理 13 三、氣象與空氣污染物資料整理 14 四、縣市人口密度換算 15 (四)資料填補 15 第二節 統計分析 16 (一)描述性統計 16 一、登革熱病例與布氏指數 16 二、氣象因子與空氣污染物 16 (二)關聯性分析 16 一、皮爾森相關係數分析(Pearson correlation coefficient analysis) 16 二、隨機森林模型(random forest model) 17 第三節 延遲效應與閾值效應分析 18 (一)非線性遞延分配模型(Distributed lag non-linear model,DLNM) 18 (二)分段迴歸模型(segmented regression model) 19 第四節 使用工具 20 第三章 結果 21 第一節 登革熱、布氏指數、氣象因子與空氣污染物之趨勢與分布 21 (一)我國登革熱病例與布氏指數之縣市分布與趨勢 21 一、我國登革熱境外移入病例縣市分布與趨勢 21 二、我國登革熱本土病例縣市分布與趨勢 21 三、我國布氏指數縣市分布與趨勢 22 (二)我國氣象因子與空氣污染物之縣市分布概況 22 一、單日平均氣溫 22 二、單日最高氣溫 22 三、單日最低氣溫 23 四、單日累積雨量 23 五、單日平均相對濕度 23 六、單日最高細懸浮微粒濃度 23 七、單日最高二氧化硫濃度 23 八、單日最高二氧化氮濃度 24 九、單日最高臭氧濃度 24 十、單日最高一氧化碳濃度 24 第二節 氣象因子與空氣污染物對各縣市登革熱與布氏指數之影響 25 (一)氣象因子與空氣污染物之共變性 25 (二)氣象因子與空氣污染物對各縣市登革熱與布氏指數之影響比較 25 一、臺北市 25 二、新北市 25 三、桃園市 26 四、臺中市 26 五、臺南市 26 六、高雄市 26 七、屏東縣 27 八、澎湖縣 27 第三節 氣象因子與空氣污染物對各縣市登革熱與布氏指數之延遲效應與閾值效應 28 (一)氣象因子與空氣污染物對各縣市登革熱與布氏指數之延遲效應 28 一、臺北市 28 二、新北市 28 三、桃園市 29 四、臺中市 30 五、臺南市 31 六、高雄市 32 七、屏東縣 32 八、澎湖縣 33 (二)氣象因子與空氣污染物對各縣市登革熱與布氏指數之閾值效應 34 一、臺北市 34 二、新北市 35 三、桃園市 36 四、臺中市 37 五、臺南市 38 六、高雄市 40 七、屏東縣 41 八、澎湖縣 42 第四章 討論 44 第一節 研究進展 44 第二節 研究限制 46 第三節 結語 47 參考文獻 48 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 登革熱 | zh_TW |
| dc.subject | 分段迴歸模型 | zh_TW |
| dc.subject | 隨機森林模型 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 氣象因子 | zh_TW |
| dc.subject | 非線性遞延分配模型 | zh_TW |
| dc.subject | 空氣污染 | zh_TW |
| dc.subject | segmented regression model | en |
| dc.subject | dengue fever | en |
| dc.subject | climate change | en |
| dc.subject | meteorological factors | en |
| dc.subject | air pollutants | en |
| dc.subject | random forest model | en |
| dc.subject | distributed lag non-linear model | en |
| dc.title | 氣候變遷下氣象因子與空氣污染物對臺灣登革熱流行狀況與趨勢之延遲效應與閾值效應探討 | zh_TW |
| dc.title | The Delay Effect and Threshold Effect of Meteorological Factors and Air Pollutants on the Epidemic Status and Trends of Dengue in Taiwan under the Climate Change | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡坤憲;邱嘉斌;簡廷因;王玉純 | zh_TW |
| dc.contributor.oralexamcommittee | Kun-Hsien Tsai;Chia-Pin Chio;Ting-Ying Chien;Yu-Chun Wang | en |
| dc.subject.keyword | 登革熱,氣候變遷,氣象因子,空氣污染,隨機森林模型,非線性遞延分配模型,分段迴歸模型, | zh_TW |
| dc.subject.keyword | dengue fever,climate change,meteorological factors,air pollutants,random forest model,distributed lag non-linear model,segmented regression model, | en |
| dc.relation.page | 148 | - |
| dc.identifier.doi | 10.6342/NTU202201344 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-27 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 公共衛生碩士學位學程 | - |
| dc.date.embargo-lift | 2027-09-26 | - |
| 顯示於系所單位: | 公共衛生碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 此日期後於網路公開 2027-09-26 | 12.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
