請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85682完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃從仁(Tsung-Ren Huang) | |
| dc.contributor.author | Shin-Min Hsu | en |
| dc.contributor.author | 徐歆閔 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:21:24Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2022-06-23 | |
| dc.identifier.citation | Chinese References 黃金蘭, 林以正, 謝亦泰, 程威銓, Huang), 黃金蘭(Chin-Lan, Chung, C. K., Hui, N., Lin), 林以正(Yi-Cheng, Seih), 謝亦泰(Yi-Tai, Lam, B. C. P., Chen), 程威銓(Wei-Chuan, Bond, M. H., & Pennebaker, J. W. (2012). 中文版「語文探索與字詞計算」詞典之建立. 中華心理學刊, 54(2), 185–201. https://doi.org/10.6129/CJP.2012.5402.04 English References Abadi, M. K., Correa, J. A. M., Wache, J., Heng Yang, Patras, I., & Sebe, N. (2015). Inference of personality traits and affect schedule by analysis of spontaneous reactions to affective videos. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), 1–8. https://doi.org/10.1109/FG.2015.7163100 Agaibi, C. E., & Wilson, J. P. (2005). Trauma, PTSD, and resilience: A review of the literature. Trauma, Violence, & Abuse, 6(3), 195–216. https://doi.org/10.1177/1524838005277438 Akinnaso, F. N. (1982). On the differences between spoken and written language. Language and Speech, 25(2), 97–125. https://doi.org/10.1177/002383098202500201 Arnetz, B. B., Nevedal, D. C., Lumley, M. A., Backman, L., & Lublin, A. (2009). Trauma resilience training for police: Psychophysiological and performance effects. Journal of Police and Criminal Psychology, 24(1), 1–9. https://doi.org/10.1007/s11896-008-9030-y Barrick, M. R., & Mount, M. K. (1991). The big five personality dimensions and job performance: A meta-analysis. Personnel Psychology, 44(1), 1–26. Bonanno, G. A. (2004). Loss, trauma, and human resilience: Have we underestimated the human capacity to thrive after extremely aversive events? American Psychologist, 59(1), 20–28. https://doi.org/10.1037/0003-066X.59.1.20 Bryan, C., O’Shea, D., & MacIntyre, T. (2019). Stressing the relevance of resilience: A systematic review of resilience across the domains of sport and work. International Review of Sport and Exercise Psychology, 12(1), 70–111. https://doi.org/10.1080/1750984X.2017.1381140 Carciofo, R., Yang, J., Song, N., Du, F., & Zhang, K. (2016). Psychometric evaluation of chinese-language 44-item and 10-item big five personality inventories, including correlations with chronotype, mindfulness and mind wandering. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0149963 Chida, Y., & Hamer, M. (2008). Chronic psychosocial factors and acute physiological responses to laboratory-induced stress in healthy populations: A quantitative review of 30 years of investigations. Psychological Bulletin, 134(6), 829–885. https://doi.org/10.1037/a0013342 Dienstbier, R. A. (1989). Arousal and physiological toughness: Implications for mental and physical health. Psychological Review, 96(1), 84–100. https://doi.org/10.1037/0033-295X.96.1.84 Donnellan, M. B., Conger, R. D., & Bryant, C. M. (2004). The Big Five and enduring marriages. Journal of Research in Personality, 38(5), 481–504. https://doi.org/10.1016/j.jrp.2004.01.001 Eyben, F. (2015). 3.5 INTERSPEECH 2013 ComParE Set. In F. Eyben (Ed.), Real-time speech and music classification by large audio feature space extraction. Springer. Eyben, F., Wöllmer, M., & Schuller, B. (2010). Opensmile: The munich versatile and fast open-source audio feature extractor. Proceedings of the 18th ACM International Conference on Multimedia, 1459–1462. https://doi.org/10.1145/1873951.1874246 Fallahnezhad, M., Vali, M., & Khalili, M. (2017). Automatic personality recognition from reading text speech. 2017 Iranian Conference on Electrical Engineering (ICEE), 18–23. https://doi.org/10.1109/IranianCEE.2017.7985447 Fletcher, D., & Sarkar, M. (2012). A grounded theory of psychological resilience in Olympic champions. Psychology of Sport and Exercise, 13(5), 669–678. https://doi.org/10.1016/j.psychsport.2012.04.007 Friborg, O., Hjemdal, O., Rosenvinge, J. H., Martinussen, M., Aslaksen, P. M., & Flaten, M. A. (2006). Resilience as a moderator of pain and stress. Journal of Psychosomatic Research, 61(2), 213–219. https://doi.org/10.1016/j.jpsychores.2005.12.007 Gabrieli, G., Azhari, A., & Esposito, G. (2020). PySiology: A python package for physiological feature extraction. In G. Gabrieli, A. Azhari, & G. Esposito (Eds.), Neural approaches to dynamics of signal exchanges (pp. 395–402). Springer. Garmezy, N. (1974). The study of competence in children at risk for severe psychopathology. In E. J. Anthony & C. Koupernik (Eds.), The child in his family: Children at psychiatric risk. John Wiley & Sons. Gill, A. J., & Oberlander, J. (2002). Taking care of the linguistic features of extraversion. Proceedings of the Annual Meeting of the Cognitive Science Society, 24(24). Goldberg, L. R. (1990). An alternative 'description of personality': The big-five factor structure. Journal of Personality and Social Psychology, 59, 1216–1229. Goldberg, L. R. (1993). The structure of phenotypic personality traits. American Psychologist, 9. Grant, A. M., Curtayne, L., & Burton, G. (2009). Executive coaching enhances goal attainment, resilience and workplace well-being: A randomised controlled study. The Journal of Positive Psychology, 4(5), 396–407. https://doi.org/10.1080/17439760902992456 Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49(12), 1023–1039. https://doi.org/10.1016/S0006-3223(01)01157-X Hirsh, J. B., & Peterson, J. B. (2009). Personality and language use in self-narratives. Journal of Research in Personality, 43(3), 524–527. https://doi.org/10.1016/j.jrp.2009.01.006 Holtgraves, T. (2011). Text messaging, personality, and the social context. Journal of Research in Personality, 45(1), 92–99. https://doi.org/10.1016/j.jrp.2010.11.015 Hoogh, A. H. B. D., Hartog, D. N. D., & Koopman, P. L. (2005). Linking the Big Five-Factors of personality to charismatic and transactional leadership; perceived dynamic work environment as a moderator. Journal of Organizational Behavior, 26(7), 839–865. https://doi.org/10.1002/job.344 Hopper, J. W., Spinazzola, J., Simpson, W. B., & van der Kolk, B. A. (2006). Preliminary evidence of parasympathetic influence on basal heart rate in posttraumatic stress disorder. Journal of Psychosomatic Research, 60(1), 83–90. https://doi.org/10.1016/j.jpsychores.2005.06.002 Hovens, J. G. F. M., Wiersma, J. E., Giltay, E. J., Oppen, P. V., Spinhoven, P., Penninx, B. W. J. H., & Zitman, F. G. (2010). Childhood life events and childhood trauma in adult patients with depressive, anxiety and comorbid disorders vs. controls. Acta Psychiatrica Scandinavica, 122(1), 66–74. https://doi.org/10.1111/j.1600-0447.2009.01491.x Howard, G. S. (1980). Response-shift bias: A problem in evaluating interventions with pre/post self-reports. Evaluation Review, 4(1), 93–106. https://doi.org/10.1177/0193841X8000400105 Ivanov, A. V., Riccardi, G., Sporka, A. J., & Franc, J. (2011). Recognition of personality traits from human spoken conversations. INTERSPEECH. Jackson, D., Firtko, A., & Edenborough, M. (2007). Personal resilience as a strategy for surviving and thriving in the face of workplace adversity: A literature review. Journal of Advanced Nursing, 60(1), 1–9. https://doi.org/10.1111/j.1365-2648.2007.04412.x John, Oliver P., & Srivastava, S. (1999). The Big Five trait taxonomy: History, measurement, and theoretical perspectives. Handbook of Personality: Theory and Research, 2(1999), 102–138. Johnson, S., Cooper, C., Cartwright, S., Donald, I., Taylor, P., & Millet, C. (2005). The experience of work‐related stress across occupations. Journal of Managerial Psychology, 20(2), 178–187. https://doi.org/10.1108/02683940510579803 Jothilakshmi, S., Sangeetha, J., & Brindha, R. (2017). Speech based automatic personality perception using spectral features. International Journal of Speech Technology, 20(1), 43–50. https://doi.org/10.1007/s10772-016-9390-0 Koelsch, S., Enge, J., & Jentschke, S. (2012). Cardiac signatures of personality. PLoS ONE, 7(2), e31441–e31441. https://doi.org/10.1371/journal.pone.0031441 Lauth Lebens, M., & W. Lauth, G. (2016). Risk and resilience factors of post-traumatic stress disorder: A review of current research. Clinical and Experimental Psychology, 02(02). https://doi.org/10.4172/2471-2701.1000120 Li, P.-H., Fu, T.-J., & Ma, W.-Y. (2019). Why attention? Analyze BiLSTM deficiency and its remedies in the case of NER. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 05, pp. 8236-8244). Luthar, S. S., Cicchetti, D., & Becker, B. (2000). The construct of resilience: A critical evaluation and guidelines for future work. Child Development, 71(3), 543–562. https://doi.org/10.1111/1467-8624.00164 Mairesse, F., Walker, M. A., Mehl, M. R., & Moore, R. K. (2007). Using linguistic cues for the automatic recognition of personality in conversation and text. Journal of Artificial Intelligence Research, 30, 457–500. https://doi.org/10.1613/jair.2349 Makowski, D., Pham, T., Lau, Z. J., Brammer, J. C., Pham, H., Lespinasse, F., Schölzel, C., & SH Chen, A. (2020). NeuroKit2: A Python Toolbox for Neurophysiological Signal Processing. Zenodo. https://doi.org/10.5281/ZENODO.3597887 Malik, M. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use: Task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology. Annals of Noninvasive Electrocardiology, 1(2), 151–181. Masten, A. S. (2001). Ordinary magic: Resilience processes in development. American Psychologist, 56(3), 227–238. https://doi.org/10.1037/0003-066X.56.3.227 McCrae, R. R., & John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of Personality, 60(2), 175–215. https://doi.org/10.1111/j.1467-6494.1992.tb00970.x Mehl, M. R., Gosling, S. D., & Pennebaker, J. W. (2006). Personality in its natural habitat: Manifestations and implicit folk theories of personality in daily life. Journal of Personality and Social Psychology, 90(5), 862–877. https://doi.org/10.1037/0022-3514.90.5.862 Miranda Correa, J. A., Abadi, M. K., Sebe, N., & Patras, I. (2018). AMIGOS: A Dataset for affect, personality and mood research on individuals and groups. IEEE Transactions on Affective Computing, 1–1. https://doi.org/10.1109/TAFFC.2018.2884461 Mohammadi, G., & Vinciarelli, A. (2012). Automatic personality perception: Prediction of trait attribution based on prosodic features. IEEE Transactions on Affective Computing, 3(3), 273–284. https://doi.org/10.1109/T-AFFC.2012.5 Mummery, W. K., Schofield, G., & Perry, C. (2004). Bouncing back: The role of coping style, social support and self-concept in resilience of sport performance. Athletic Insight, 6(3), 1–15. Nowson, S. (2006). A study of genre and individual differences. University of Edinburgh. Oberlander, J., & Gill, A. J. (2006). Language with character: A stratified corpus comparison of individual differences in e-mail communication. Discourse Processes, 42(3), 239–270. https://doi.org/10.1207/s15326950dp4203_1 O’Connor, M. C., & Paunonen, S. V. (2007). Big Five personality predictors of post-secondary academic performance. Personality and Individual Differences, 43(5), 971–990. https://doi.org/10.1016/j.paid.2007.03.017 Pennebaker, J. W., & King, L. A. (1999). Linguistic styles: Language use as an individual difference. Journal of Personality and Social Psychology, 77(6), 1296–1312. https://doi.org/10.1037/0022-3514.77.6.1296 Pennebaker, J. W., Mehl, M. R., & Niederhoffer, K. G. (2003). Psychological aspects of natural language use: Our words, our selves. Annual Review of Psychology, 54(1), 547–577. https://doi.org/10.1146/annurev.psych.54.101601.145041 Pipe, T. B., Buchda, V. L., Launder, S., Hudak, B., Hulvey, L., Karns, K. E., & Pendergast, D. (2012). Building personal and professional resources of resilience and agility in the healthcare workplace. Stress and Health, 28(1), 11–22. https://doi.org/10.1002/smi.1396 Polzehl, T., Möller, S., & Metze, F. (2010). Automatically assessing personality from speech. 2010 IEEE Fourth International Conference on Semantic Computing, 134–140. https://doi.org/10.1109/ICSC.2010.41 Qiu, L., Lin, H., Ramsay, J., & Yang, F. (2012). You are what you tweet: Personality expression and perception on Twitter. Journal of Research in Personality, 46(6), 710–718. https://doi.org/10.1016/j.jrp.2012.08.008 Qiu, L., Lu, J., Ramsay, J., Yang, S., Qu, W., & Zhu, T. (2017). Personality expression in Chinese language use. International Journal of Psychology, 52(6), 463–472. https://doi.org/10.1002/ijop.12259 Redeker, G. (1984). On differences between spoken and written language∗. Discourse Processes, 7(1), 43–55. https://doi.org/10.1080/01638538409544580 Salgado, J. F., & Moscoso, S. (2002). Comprehensive meta-analysis of the construct validity of the employment interview. European Journal of Work and Organizational Psychology, 11(3), 299–324. https://doi.org/10.1080/13594320244000184 Salters-Pedneault, K., Ruef, A. M., & Orr, S. P. (2010). Personality and psychophysiological profiles of police officer and firefighter recruits. Personality and Individual Differences, 49(3), 210–215. https://doi.org/10.1016/j.paid.2010.03.037 Sánchez-Maroño, N., Alonso-Betanzos, A., & Tombilla-Sanromán, M. (2007). Filter methods for feature selection – A comparative study. In H. Yin, P. Tino, E. Corchado, W. Byrne, & X. Yao (Eds.), Intelligent Data Engineering and Automated Learning—IDEAL 2007 (Vol. 4881, pp. 178–187). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77226-2_19 Scherer, K. R., & Giles, H. (1979). Personality markers in speech. In K. Scherer, & Giles, H. (Eds.), Social markers in speech (Vol. 6). Cambridge University Press Cambridge. Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K., Ringeval, F., ... & Kim, S. (2013). The INTERSPEECH 2013 computational paralinguistics challenge: Social signals, conflict, emotion, autism. In Proceedings INTERSPEECH 2013, 14th Annual Conference of the International Speech Communication Association, Lyon, France. Smith, B. L., Brown, B. L., Strong, W. J., & Rencher, A. C. (1975). Effects of speech rate on personality perception. Language and Speech, 18(2), 145–152. Stein, M. B., Simmons, A. N., Feinstein, J. S., & Paulus, M. P. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone participants. American Journal of Psychiatry, 164(2), 318–327. https://doi.org/10.1176/ajp.2007.164.2.318 Subramanian, R., Wache, J., Abadi, M. K., Vieriu, R. L., Winkler, S., & Sebe, N. (2018). ASCERTAIN: Emotion and personality recognition using commercial sensors. IEEE Transactions on Affective Computing, 9(2), 147–160. https://doi.org/10.1109/TAFFC.2016.2625250 Suen, H.-Y., Hung, K.-E., & Lin, C.-L. (2019). Tensorflow-based automatic personality recognition used in asynchronous video interviews. IEEE Access, 7, 61018–61023. https://doi.org/10.1109/ACCESS.2019.2902863 Sutin, A. R., & Robins, R. W. (2005). Continuity and correlates of emotions and motives in self-defining memories. Journal of Personality, 73(3), 793–824. https://doi.org/10.1111/j.1467-6494.2005.00329.x Taylor, C. B. (2010). Depression, heart rate related variables and cardiovascular disease. International Journal of Psychophysiology, 78(1), 80–88. https://doi.org/10.1016/j.ijpsycho.2010.04.006 Taylor, S., Jaques, N., Chen, W., Fedor, S., Sano, A., & Picard, R. (2015). Automatic identification of artifacts in electrodermal activity data. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2015, 1934–1937. https://doi.org/10.1109/EMBC.2015.7318762. Vinciarelli, A., & Mohammadi, G. (2014). A survey of personality computing. IEEE Transactions on Affective Computing, 5(3), 273–291. https://doi.org/10.1109/TAFFC.2014.2330816 Wang, S., & Chen, S. (2011). Associations of sense of self, resilience and posttraumatic stress symptoms among burn patients (Unpublished master’s thesis). National Taiwan University, Taipei, Taiwan. Wayne, J. H., Musisca, N., & Fleeson, W. (2004). Considering the role of personality in the work–family experience: Relationships of the big five to work–family conflict and facilitation. Journal of Vocational Behavior, 64(1), 108–130. https://doi.org/10.1016/S0001-8791(03)00035-6 Yarkoni, T. (2010). Personality in 100,000 Words: A large-scale analysis of personality and word use among bloggers. Journal of Research in Personality, 44(3), 363–373. https://doi.org/10.1016/j.jrp.2010.04.001 Zhang, T., & Kuo, C.-C. J. (2001). Audio feature analysis. In T. Zhang & C.-C. J. Kuo (Eds.), Content-based audio classification and retrieval for audiovisual data parsing (pp. 35–54). Springer US. https://doi.org/10.1007/978-1-4757-3339-6_3 Zhu, M., Xie, X., Zhang, L., & Wang, J. (2018). Automatic personality perception from speech in mandarin. 2018 11th International Symposium on Chinese Spoken Language Processing (ISCSLP), 309–313. https://doi.org/10.1109/ISCSLP.2018.8706692 Zohar, A. H., Cloninger, C. R., & McCraty, R. (2013). Personality and heart rate variability: Exploring pathways from personality to cardiac coherence and health. Open Journal of Social Sciences, 01(06), 32. https://doi.org/10.4236/jss.2013.16007 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85682 | - |
| dc.description.abstract | 大五人格和心理韌性是個人特質中相當重要的面向,可以被廣泛運用於學術界和業界,例如人事選拔或臨床心理領域。至今為止,其測量方式多半仰賴自陳式量表,不僅耗時耗力,也容易受填答者的主觀意識而影響作答。因此,本研究旨在藉由人機互動中所記錄的言語訊號與心電圖的振幅強度(Electrocardiogram (ECG) amplitude)、心率變異分析(Heart Rate Variability, HRV)和膚電生理回饋(Galvanic Skin Response, GSR)等生理訊號來預測大五人格特質和心理韌性。我們搜集32位受試者所提取並陳述的六段記憶——涵蓋正負向和三個時期(國小、國高中、大學)——以探討正負向情境和時間的潛在干擾並同時紀錄其對應的生理與語音訊號。首先,我們進行各訊號和問卷中各向度的相關分析來萃取有用的特徵訊號,再利用機器學習技術於這些特徵訊號來建立能預測個人特徵高低的二元分類模型。結果顯示:聲音訊號和生理訊號都能夠有效地預測大五人格和心理韌性的程度;預測模型對於高分組與低分組的二元區分可達0.68~0.86的F1分數。此研究證明行為與生理資料能夠有效地預測性格與韌性等重要個人特質。 | zh_TW |
| dc.description.abstract | Big-five personality and resilience are important personality characteristics and targets of interest in academic and industrial domains, such as personnel selection and clinical psychology. So far, the measurements of these two personal characteristics mainly rely on self-reported questionnaires, which are tedious and prone to response biases. To address these issues, the present study explored the possibility of predicting one’s resilience and big-five personality traits using speech and physiological signals measured during human-robot interactions. The audio features were extracted using OpenSMILE; the word usage was categorized using Linguistic Inquiry and Word Count (LIWC). The physiological signals include Electrocardiogram (ECG) amplitude, Heart Rate Variability (HRV), and Galvanic Skin Response (GSR). We asked 32 participants to retrieve six memories—positive and negative memories across three different periods—to balance the influence of valence. In the meantime, we recorded their audio and physiological signals during memory interpretation. We first examine correlations between personality traits and behavioral data and then build binary prediction models for factors in the big-five model and resilience. Results suggest that the audio modality and the physiological signals can serve as effective methods for predicting personality and resilience. Best achieved F1-scores range from 0.68 to 0.86 depending on different traits. Our research confirmed that behavioral features could provide effective cues for recognizing personal traits. To our knowledge, this is the first research using both speech and physiological signals to predict resilience. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:21:24Z (GMT). No. of bitstreams: 1 U0001-1706202210441800.pdf: 2162443 bytes, checksum: 3fc88e04aed9a740f2fe130775278a3a (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………… i 誌謝………………………………………………………………………………… ii 中文摘要………………………………………………………………………… iii 英文摘要………………………………………………………………………… iv Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Thesis Organization 3 Chapter 2 Theoretical Concepts 4 2.1 Personality Traits 4 2.2 Resilience 6 2.3 Physiological Signals 8 2.4 Speech Signals 11 Chapter 3 Personality Computing 13 3.1 Personality and Audio Features 14 3.2 Personality and Linguistic Features 16 3.3 Personality and Physiological Signals 18 Chapter 4 Methods 21 4.1 Questionnaires 21 4.2 Physiological Signals Recording and Features Extraction 22 4.3 Speech Signals Recording and Features Extraction 26 4.4 Features Selection 30 4.5 Classification 31 Chapter 5 Experiment 33 5.1 Experiment Description 33 5.2 Procedure 33 5.3 Participants 35 Chapter 6 Results 36 6.1 Questionnaires 36 6.2 Correlational Analysis 40 6.3 Classification Results 51 6.4 Best Classifiers 54 Chapter 7 Discussion 56 7.1 Correlational Analysis 56 7.2 Classification Results 59 7.3 Contributions and Limitations 60 Chapter 8 Conclusions 62 References 63 Chinese References 63 English References 63 Appendix 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 人機互動 | zh_TW |
| dc.subject | 心電圖 | zh_TW |
| dc.subject | 心率變異分析 | zh_TW |
| dc.subject | 膚電生理回饋 | zh_TW |
| dc.subject | 語文探索與字詞計算 | zh_TW |
| dc.subject | 語音訊號 | zh_TW |
| dc.subject | 自動辨識人格特質 | zh_TW |
| dc.subject | 心理韌性 | zh_TW |
| dc.subject | 大五人格特質 | zh_TW |
| dc.subject | ECG | en |
| dc.subject | human-robot interaction | en |
| dc.subject | big-five personality traits | en |
| dc.subject | resilience | en |
| dc.subject | automatic personality recognition | en |
| dc.subject | audio features | en |
| dc.subject | LIWC | en |
| dc.subject | GSR | en |
| dc.subject | HRV | en |
| dc.title | 人格特質和心理韌性可利用生理和言語訊號預測 | zh_TW |
| dc.title | Personality and Resilience Are Predictable by Physiological and Speech Signals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曹昱(Yu Tsao),陳淑惠(Sue-Huei Chen),張仁和(Jen-Ho Chang) | |
| dc.subject.keyword | 心電圖,心率變異分析,膚電生理回饋,語文探索與字詞計算,語音訊號,自動辨識人格特質,心理韌性,大五人格特質,人機互動, | zh_TW |
| dc.subject.keyword | ECG,HRV,GSR,LIWC,audio features,automatic personality recognition,resilience,big-five personality traits,human-robot interaction, | en |
| dc.relation.page | 108 | |
| dc.identifier.doi | 10.6342/NTU202200981 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-06-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 心理學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1706202210441800.pdf | 2.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
