Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85657
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇柏青(Borching Su)
dc.contributor.authorXi-Jun Chenen
dc.contributor.author陳曦鈞zh_TW
dc.date.accessioned2023-03-19T23:20:45Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-06-24
dc.identifier.citation[1] T. Wang, J. G. Proakis, E. Masry and J. R. Zeidler, 'Performance degradation of OFDM systems due to Doppler spreading,' in IEEE Transactions on Wireless Communications, vol. 5, no. 6, pp. 1422-1432, Jun. 2006. [2] V. Vahidi and E. Saberinia, 'OFDM high speed train communication systems in 5G cellular networks,' in Proc. 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, pp. 1-6, Jan. 2018. [3] R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch and R. Calderbank, 'Orthogonal Time Frequency Space Modulation,' in Proc. IEEE Wireless Communications and Networking Conference (WCNC), pp. 1-6, Mar. 2017. [4] R. Hadani, S. Rakib, S. Kons, M. Tsatsanis, A. Monk, C. Ibars, J. Delfeld, Y. Hebron, A. J. Goldsmith, A.F. Molisch and R. Calderbank, 'Orthogonal Time Frequency Space Modulation,' 2018, arXiv:1808.00519. [5] A. Monk, R. Hadani, M. Tsatsanis, and S. Rakib., 'OTFS - Orthogonal Time Frequency Space,' 2016, arXiv:1608.02993. [6] R. Hadani and A. Monk., 'OTFS: A New Generation of Modulation Addressing the Challenges of 5G,' 2018, arXiv:1802.02623. [7] Z. Wei, W. Yuan, S. Li, J. Yuan, G. Bharatula, R. Hadani, and L. Hanzo, 'Orthogonal Time-Frequency Space Modulation: A Promising Next-Generation Waveform,' in IEEE Wireless Communications, vol. 28, no. 4, pp. 136-144, Aug. 2021. [8] P. Bello, 'Characterization of Randomly Time-Variant Linear Channels,' in IEEE Transactions on Communications Systems, vol. 11, no. 4, pp. 360-393, Dec. 1963. [9] F. Hlawatsch and G. Matz, Wireless Communications Over Rapidly Time-Varying Channels, New York, NY, USA: Academic, 2011. [10] P. Raviteja, K. T. Phan, Y. Hong and E. Viterbo, 'Interference Cancellation and Iterative Detection for Orthogonal Time Frequency Space Modulation,' in IEEE Transactions on Wireless Communications, vol. 17, no. 10, pp. 6501-6515, Oct. 2018. [11] G. D. Surabhi, R. M. Augustine and A. Chockalingam, 'On the Diversity of Uncoded OTFS Modulation in Doubly-Dispersive Channels,' in IEEE Transactions on Wireless Communications, vol. 18, no. 6, pp. 3049-3063, Jun. 2019. [12] P. Raviteja, Y. Hong, E. Viterbo and E. Biglieri, 'Effective Diversity of OTFS Modulation,' in IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 249-253, Feb. 2020. [13] J. Cheng, H. Gao, W. Xu, Z. Bie and Y. Lu, 'Low-complexity linear equalizers for OTFS exploiting two-dimensional fast Fourier transform,' 2019, arXiv:1909.00524. [14] G. D. Surabhi and A. Chockalingam, 'Low-Complexity Linear Equalization for OTFS Modulation,' in IEEE Commun. Lett., vol. 24, no. 2, pp. 330-334, Feb. 2020. [15] P. Raviteja, K. T. Phan, Q. Jin, Y. Hong and E. Viterbo, 'Low-complexity iterative detection for orthogonal time frequency space modulation,' in Proc. IEEE Wireless Communications and Networking Conference (WCNC), pp. 1-6, Apr. 2018. [16] M. Kollengode Ramachandran and A. Chockalingam, 'MIMO-OTFS in High-Doppler Fading Channels: Signal Detection and Channel Estimation,' in Proc. IEEE Global Communications Conference (GLOBECOM), pp. 206-212, Dec. 2018. [17] K. R. Murali and A. Chockalingam, 'On OTFS Modulation for High-Doppler Fading Channels,' in Proc. ITA, San Diego, CA, USA, Feb. 2018, pp. 1-10. [18] W. Yuan, Z. Wei, J. Yuan and D. W. K. Ng, 'A Simple Variational Bayes Detector for Orthogonal Time Frequency Space (OTFS) Modulation,' in IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 7976-7980, July 2020. [19] S. Li et al., 'Hybrid MAP and PIC Detection for OTFS Modulation,' in IEEE Transactions on Vehicular Technology, vol. 70, no. 7, pp. 7193-7198, Jul. 2021. [20] H. Li, Y. Dong, C. Gong, Z. Zhang, X. Wang and X. Dai, 'Low Complexity Receiver via Expectation Propagation for OTFS Modulation,' in IEEE Communications Letters, vol. 25, no. 10, pp. 3180-3184, Oct. 2021. [21] T. Zou, W. Xu, H. Gao, Z. Bie, Z. Feng and Z. Ding, 'Low-Complexity Linear Equalization for OTFS Systems with Rectangular Waveforms,' in IEEE Int. Conf. Commun. Workshops (ICC Workshops), pp. 1-6, Jun. 2021. [22] A. RezazadehReyhani, A. Farhang, M. Ji, R. R. Chen and B. Farhang-Boroujeny, 'Analysis of Discrete-Time MIMO OFDM-Based Orthogonal Time Frequency Space Modulation,' in Proc. IEEE International Conference on Communications (ICC), Kansas City, MO, USA, May 2018, pp. 1-6. [23] A. Nimr, M. Chafii, M. Matthe and G. Fettweis, 'Extended GFDM Framework: OTFS and GFDM Comparison,' in Proc. IEEE Global Communications Conference (GLOBECOM), Dec. 2018, pp. 1-6. [24] N. Hashimoto, N. Osawa, K. Yamazaki and S. Ibi, 'Channel Estimation and Equalization for CP-OFDM-based OTFS in Fractional Doppler Channels,' in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), pp. 1-7, Jun. 2021. [25] S. S. Das, V. Rangamgari, S. Tiwari and S. C. Mondal, 'Time Domain Channel Estimation and Equalization of CP-OTFS Under Multiple Fractional Dopplers and Residual Synchronization Errors,' in IEEE Access, vol. 9, pp. 10561-10576, Dec. 2021. [26] L. Li, Y. Liang, P. Fan and Y. Guan, 'Low Complexity Detection Algorithms for OTFS under Rapidly Time-Varying Channel,' in Proc. IEEE 89th Vehicular Technology Conference (VTC-Spring), Apr. 2019, pp. 1-5. [27] Z. Yuan, F. Liu, W. Yuan, Q. Guo, Z. Wang and J. Yuan, 'Iterative Detection for Orthogonal Time Frequency Space Modulation With Unitary Approximate Message Passing,' in IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 714-725, Feb. 2022. [28] F. Long, K. Niu and J. Lin, 'Low Complexity Block Equalizer for OTFS Based on Expectation Propagation,' in IEEE Wireless Communications Letters, vol. 11, no. 2, pp. 376-380, Feb. 2022. [29] L. Li, H. Wei, Y. Huang, Y. Yao, W. Ling, G. Chen, P. Li and Y. Cai, 'A Simple Two-Stage Equalizer With Simplified Orthogonal Time Frequency Space Modulation Over Rapidly Time-Varying Channels,' 2017, arXiv:1709.02505v1. [30] C. Jin, Z. Bie, X. Lin, W. Xu and H. Gao, 'A Simple Two-Stage Equalizer for OTFS With Rectangular Windows,' in IEEE Communications Letters, vol. 25, no. 4, pp. 1158-1162, Apr. 2021. [31] P. Raviteja, Y. Hong, E. Viterbo and E. Biglieri, 'Practical Pulse-Shaping Waveforms for Reduced-Cyclic-Prefix OTFS,' in IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 957-961, Jan. 2019. [32] P. Raviteja, E. Viterbo and Y. Hong, 'OTFS Performance on Static Multipath Channels,' in IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 745-748, Jun. 2019. [33] H. Zhang, X. Huang and J. A. Zhang, 'Comparison of OTFS Diversity Performance over Slow and Fast Fading Channels,' in Proc. IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, pp. 828-833, Aug. 2019. [34] S. Tiwari, S. S. Das and V. Rangamgari, 'Low complexity LMMSE Receiver for OTFS,' in IEEE Communications Letters, vol. 23, no. 12, pp. 2205-2209, Dec. 2019. [35] H. Zhang, X. Huang and J. A. Zhang, 'Adaptive Transmission With Frequency-Domain Precoding and Linear Equalization Over Fast Fading Channels,' in IEEE Trans. Wireless Communications, vol. 20, no. 11, pp. 7420-7430, Nov. 2021. [36] L. Jing, H. Wang, C. He, Y. Zhang and H. Yin, 'Two Dimensional Adaptive Multichannel Decision Feedback Equalization for OTFS System,' in IEEE Communications Letters, vol. 25, no. 3, pp. 840-844, Mar. 2021. [37] Y. Ge, Q. Deng, P. C. Ching and Z. Ding, 'Receiver Design for OTFS with a Fractionally Spaced Sampling Approach,' in IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4072-4086, July 2021. [38] F. Liu, Z. Yuan, Q. Guo, Z. Wang and P. Sun, 'Multi-Block UAMP-Based Detection for OTFS With Rectangular Waveform,' in IEEE Wireless Communications Letters, vol. 11, no. 2, pp. 323-327, Feb. 2022. [39] S. Li, W. Yuan, Z. Wei and J. Yuan, 'Cross Domain Iterative Detection for Orthogonal Time Frequency Space Modulation,' in IEEE Transactions on Wireless Communications, vol. 21, no. 4, pp. 2227-2242, April 2022. [40] T. Thaj and E. Viterbo, 'Low Complexity Iterative Rake Decision Feedback Equalizer for Zero-Padded OTFS Systems,' in IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15606-15622, Dec. 2020. [41] T. Thaj and E. Viterbo, 'Low Complexity Iterative Rake Detector for Orthogonal Time Frequency Space Modulation,' in Proc. IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), May 2020. [42] Z. Wei, W. Yuan, S. Li, J. Yuan and D. W. K. Ng, 'Transmitter and Receiver Window Designs for Orthogonal Time-Frequency Space Modulation,' in IEEE Transactions on Communications, vol. 69, no. 4, pp. 2207-2223, Apr. 2021. [43] L. Gaudio, M. Kobayashi, G. Caire and G. Colavolpe, 'On the Effectiveness of OTFS for Joint Radar Parameter Estimation and Communication,' in IEEE Transactions on Wireless Communications, vol. 19, no. 9, pp. 5951-5965, Sep. 2020. [44] Z. Wei, W. Yuan, S. Lit, J. Yuant and D. W. Kwan Ngt, 'A New Off-grid Channel Estimation Method with Sparse Bayesian Learning for OTFS Systems,' in IEEE Global Communications Conference (GLOBECOM), pp. 01-07, Dec. 2021. [45] Q. Wang, B. Jia, Z. Zhang, H. Liu and P. Fan, 'OTFS Channel Estimation via 2D Off-grid Decomposition and SBL Combination,' in IEEE/CIC International Conference on Communications in China (ICCC Workshops), pp. 416-421, Jul. 2021. [46] Gómez-Cuba, Felipe. 'Compressed Sensing Channel Estimation for OTFS Modulation in Non-Integer Delay-Doppler Domain,' 2021, arXiv:2111.12382. [47] Imran Ali Khan, and Saif Khan Mohammed. 'Low Complexity Channel Estimation for OTFS Modulation with Fractional Delay and Doppler,' 2021, arXiv:2111.06009. [48] Y. P. Lin, S. M. Phoong, and P. P. Vaidyanathan, Filter Bank Transceivers for OFDM and DMT Systems. Cambridge, U.K.: Cambridge Univ. Press, 2011. [49] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.:Cambridge Univ. Press, 2005. [50] C. F. V. Loan, 'The ubiquitous Kronecker product,' J. Comput. Appl. Math., vol. 123, no. 1-2, pp. 85-100, 2000. [51] Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000, document ITU-R M. 1225, 1997. [52] Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and Reception, Version 16.8.0, Release 16, document TS 36.104, (3rd Generation Partnership Project) 3GPP, Jan. 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85657-
dc.description.abstract正交時頻空間(Orthogonal Time Frequency Space, OTFS)調變系統是近期被提出用來解決高都卜勒敏感度問題的技術,其概念是將一個衰落、時變的通道轉換至另一個與時間獨立的二維通道,讓通道增益具有接近常數的效果,此二維平面被稱作延遲都卜勒域(Delay-Doppler Domain)。因此,相較於傳統的OFDM,OTFS調變更適合用於具有龐大都卜勒頻率偏移的高移動性通訊場景中。然而,現有針對採用矩形波形(Rectangular Waveforms)之循環前綴(Cyclic Prefix, CP)正交時頻空間調變系統的通道等化技術所需運算複雜度都非常高。在本論文中,透過遵循兩階段等化器(Two-Stage Equalization)架構,我們在兩個階段都提出了新方法。在第一階段,提出了一種基於理想波形假設的最小均方誤差(Minimum Mean Square Error, MMSE)等化器來初始估計資訊符號(Information Symbols);在第二階段,開發了一種迭代最大比值合併(Maximal Ratio Combining, MRC)檢測器以進一步消除殘餘干擾。 此外,藉由將第一階段等化器替換成現有存在的方法,還提出了另外兩種新的兩階段等化器組合來提高性能。我們所提出的接收器能以較低的複雜度被實現,從模擬結果也驗證了在傳播路徑數量足夠多的場景之下,與傳統的MMSE等化器、訊息傳遞演算法(Message Passing Algorithm, MPA)檢測器、以及現有的兩階段等化器相比,它們在高訊號雜訊比(Signal-to-Noise Ratio, SNR)區域會有更好的位元錯誤率(Bit Error Rate, BER)性能。zh_TW
dc.description.abstractOrthogonal time frequency space (OTFS) modulation has been recently proposed to tackle the high Doppler sensitivity problem, which converts the fading, time-varying channel into a two-dimensional time-independent channel with near-constant channel gain in delay-Doppler domain. Hence, compared to the conventional OFDM, OTFS modulation is more compatible with high mobility communication scenarios with large Doppler frequency shifts. However, the computational complexity of the existing equalization techniques for cyclic prefix (CP) OTFS modulation using rectangular waveforms is very high. In this thesis, by following a two-stage equalization architecture, we proposed new methods in both stages. In first stage, an ideal-waveform-assumption-based minimum mean squared error (MMSE) equalizer is proposed to initial estimate information symbols. In second stage, an iterative maximal ratio combining (MRC) detector is developed to further eliminate the residual interference. In addition, another two new combinations of two-stage equalization are also proposed by substituting the first stage equalizer with the existing methods to improve the performance. Our proposed receivers can be implemented with low complexity, and simulation results validate that they have better bit error rate (BER) performance in the high signal-to-noise ratio (SNR) region under the scenario when the number of propagation paths is large enough compared to conventional MMSE equalizer, message passing algorithm (MPA) detector, and existing two-stage equalizers.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:20:45Z (GMT). No. of bitstreams: 1
U0001-2106202210554100.pdf: 6979855 bytes, checksum: a4a85e09bf8c39306f9b1c07ee9d55ca (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 ..... i 摘要 ..... ii Abstract ..... iii Contents ..... iv List of Figures ..... vii List of Tables ..... x 1 Introduction ..... 1 1.1 Introduction ..... 2 1.2 Related Works ..... 4 1.3 Motivation ..... 5 1.4 Contribution ..... 6 1.5 Notation ..... 7 2 System Model ..... 8 2.1 Block Diagram ..... 9 2.2 OTFS Transmitter ..... 11 2.3 Linear Time-Varying Channel ..... 13 2.4 OTFS Receiver ..... 19 2.5 Delay-Time Domain Representation ..... 22 3 Input-Output Relation for Rectangular Waveforms ..... 24 3.1 Rectangular Waveforms ..... 25 3.2 Delay-Time Domain ..... 28 3.2.1 Full-CP Mode ..... 28 3.2.2 Reduced-CP Mode ..... 30 3.3 Delay-Doppler Domain ..... 31 3.4 Time-Frequency Domain ..... 34 4 Proposed Methods for Two-Stage Equalization ..... 37 4.1 Equalization Techniques ..... 38 4.2 First Stage Equalizer ..... 40 4.2.1 Review Existing Method: Block-Wise MMSE Equalizer ..... 40 4.2.2 Review Existing Method: One-Tap MMSE Equalizer ..... 41 4.2.3 Ideal-Based MMSE Equalizer ..... 42 4.2.4 Comparison of Computational Complexity ..... 45 4.3 Second Stage Equalizer ..... 46 4.3.1 Maximal Ratio Combining Detector ..... 46 4.3.2 Reduced Complexity MRC Detector ..... 51 4.3.3 Comparison of Computational Complexity ..... 56 4.4 Two-Stage Equalizer ..... 57 5 Simulation Results ..... 59 5.1 Deterministic Channel Model ..... 61 5.1.1 Simulation Parameters ..... 61 5.1.2 AWGN Channel ..... 62 5.1.3 Two-Path Propagation Channel ..... 62 5.1.4 Three-Path Propagation Channel ..... 63 5.2 Random Channel Model ..... 66 5.2.1 Simulation Parameters ..... 66 5.2.2 Fading Channel with Integer Delay ..... 67 5.2.3 Fading Channel with Fractional Delay ..... 70 5.3 Standardized Channel Model ..... 73 5.3.1 Simulation Parameters ..... 73 5.3.2 F-CP-OTFS System ..... 74 5.3.3 R-CP-OTFS System ..... 76 5.4 Extended Vehicular A Model ..... 78 5.4.1 Comparison of MPA and MRC Detectors ..... 78 5.4.2 Comparison of Single-Stage Equalizers ..... 81 5.4.3 Comparison of Two-Stage Equalizers ..... 83 6 Conclusion and Future Work ..... 85 6.1 Conclusion ..... 86 6.2 Future Work ..... 87 A Heisenberg Transform and Wigner Transform ..... 88 A.1 Heisenberg Transform ..... 89 A.2 Wigner Transform ..... 91 B Block Circulant with Circulant Blocks (BCCB) Matrix ..... 93 B.1 Block Circulant Matrix with Circulant Blocks ..... 94 B.2 Eigenvalue Decomposition of BCCB Matrix ..... 95 Bibliography ..... 99
dc.language.isoen
dc.subject低複雜度zh_TW
dc.subject正交時頻空間zh_TW
dc.subject兩階段等化器zh_TW
dc.subject時變通道zh_TW
dc.subject最大比值合併zh_TW
dc.subjecttime-varying channelen
dc.subjecttwo-stage equalizationen
dc.subjectOrthogonal Time Frequency Space (OTFS)en
dc.subjectmaximal ratio combiningen
dc.subjectlow complexityen
dc.title基於矩形波形之循環前綴正交時頻空間調變系統之低複雜度兩階段等化器設計zh_TW
dc.titleLow Complexity Two-Stage Equalization for Cyclic Prefix Orthogonal Time Frequency Space Modulation with Rectangular Waveformsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee馮世邁(See-May Phoong),劉俊麟(Chun-Lin Liu)
dc.subject.keyword正交時頻空間,兩階段等化器,時變通道,最大比值合併,低複雜度,zh_TW
dc.subject.keywordOrthogonal Time Frequency Space (OTFS),two-stage equalization,time-varying channel,maximal ratio combining,low complexity,en
dc.relation.page104
dc.identifier.doi10.6342/NTU202201034
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-06-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
dc.date.embargo-lift2022-07-05-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2106202210554100.pdf6.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved