請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85644完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐永豐(Yung-Fong Hsu) | |
| dc.contributor.author | Tzu-Yao Lin | en |
| dc.contributor.author | 林子堯 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:20:26Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-26 | |
| dc.identifier.citation | Anders, R., Alario, F. X., & Batchelder, W. H. (2018). Consensus analysis for populations with latent subgroups: Applying multicultural consensus theory and model-based clustering with CCTpack. Cross-Cultural Research, 52(3), 274–308. https://doi.org/10.1177/1069397117727500 Anders, R., & Batchelder, W. H. (2012). Cultural consensus theory for multiple consensus truths. Journal of Mathematical Psychology, 56(6), 452–469. https://doi.org/10.1016/j.jmp.2013.01.004 Anders, R., & Batchelder, W. H. (2015). Cultural consensus theory for the ordinal data case. Psychometrika, 80(1), 151–181. https://doi.org/10.1007/s11336-013-9382-9 Anders, R., Oravecz, Z., & Batchelder, W. H. (2014). Cultural consensus theory for continuous responses: A latent appraisal model for information pooling. Journal of Mathematical Psychology, 61, 1–13. https://doi.org/10.1016/j.jmp.2014.06.001 Ando, T. (2007). Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models. Biometrika, 94(2), 443–458. https://doi.org/10.1093/biomet/asm017 Aßfalg, A., & Klauer, K. C. (2020). Consensus theory for multiple latent traits and consensus groups. Journal of Mathematical Psychology, 97, 102374. https://doi.org/10.1016/j.jmp.2020.102374 Batchelder, W. H., & Anders, R. (2012). Cultural consensus theory: Comparing different concepts of cultural truth. Journal of Mathematical Psychology, 56(5), 316–332. https://doi.org/10.1016/j.jmp.2012.06.002 Batchelder, W. H., Anders, R., & Oravecz, Z. (2018). Cultural consensus theory. In E.-J. Wagenmakers (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (4th, pp. 201–264). Wiley. https://doi.org/10.1002/9781119170174.epcn506 Batchelder, W. H., & Romney, A. K. (1986). The statistical analysis of a general Condorcet model for dichotomous choice situations. In B. Grofman & G. Owen (Eds.), Information pooling and group decision making (pp. 103–112). JAI Press. Batchelder, W. H., & Romney, A. K. (1988). Test theory without an answer key. Psychometrika, 53(1), 71–92. https://doi.org/10.1007/bf02294195 Broadbent, D. E. (1966). Two‐state threshold model and rating‐scale experiments. The Journal of the Acoustical Society of America, 40(1), 244–245. https://doi.org/10.1121/1.1910047 Comrey, A. L. (1962). The minimum residual method of factor analysis. Psychological Reports, 11(1), 15–18. https://doi.org/10.2466/pr0.1962.11.1.15 Deonovic, B. E., & Smith, B. J. (2017). Convergence diagnostics for MCMC draws of a categorical variable. arXiv:1706.04919. https://doi.org/10.48550/arxiv.1706.04919 Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398–409. https://doi.org/10.1080/01621459.1990.10476213 Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd). Chapman; Hall/CRC. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472. https://doi.org/10.1214/ss/1177011136 Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596 Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. John Wiley. Hruschka, D. J., Sibley, L. M., Kalim, N., & Edmonds, J. K. (2008). When there is more than one answer key: Cultural theories of postpartum hemorrhage in Matlab, Bangladesh. Field Methods, 20(4), 315–337. https://doi.org/10.1177/1525822X08321315 Hsu, Y.-F., & Doble, C. W. (2015). A threshold theory account of psychometric functions with response confidence under the balance condition. British Journal of Mathematical and Statistical Psychology, 68(1), 158–177. https://doi.org/10.1111/bmsp.12040 Jeffreys, H. (1998). The theory of probability (3rd). OUP Oxford. Karabatsos, G., & Batchelder, W. H. (2003). Markov chain estimation for test theory without an answer key. Psychometrika, 68(3), 373–389. https://doi.org/10.1007/bf02294733 Karl, D. K., & Klauer, C. (2018). Elementary signal detection and threshold theory. In E.-J. Wagenmakers (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (4th, pp. 1–39). Wiley. https://doi.org/10.1002/9781119170174.epcn505 Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572 Krantz, D. H. (1969). Threshold theories of signal detection. Psychological Review, 76(3), 308–324. https://doi.org/10.1037/h0027238 Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan (2nd). Academic Press. Lee, M. D. (2011). How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical Psychology, 55(1), 1–7. https://doi.org/10.1016/j.jmp.2010.08.013 Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A practical course. Cambridge University Press. Luce, R. D. (1963). A threshold theory for simple detection experiments. Psychological Review, 70(1), 61–79. https://doi.org/10.1037/h0039723 Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide (2nd). Psychology press. https://doi.org/10.4324/9781410611147 Meyer, R. (2016). Deviance information criterion (DIC). In N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, & J. Teugels (Eds.), Wiley StatsRef: Statistics reference online (pp. 1–6). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118445112.stat07878 Nachmias, J., & Steinman, R. M. (1963). Study of absolute visual detection by the rating-scale method. Journal of the Optical Society of America, 53(10), 1206–1213. https://doi.org/10.1364/JOSA.53.001206 Oravecz, Z., Anders, R., & Batchelder, W. H. (2015). Hierarchical Bayesian modeling for test theory without an answer key. Psychometrika, 80(2), 341–364. https://doi.org/10.1007/s11336-013-9379-4 Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing, 124, 1–10. https://www.r-project.org/conferences/DSC-2003/ Plummer, M. (2008). Penalized loss functions for Bayesian model comparison. Biostatistics, 9(3), 523–539. https://doi.org/10.1093/biostatistics/kxm049 Plummer, M. (2019). Rjags: Bayesian graphical models using MCMC [R package version 4-10]. https://CRAN.R-project.org/package=rjags R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.Rproject.org Rasch, G. (1960). Studies in mathematical psychology: I Probabilistic models for some intelligence and attainment tests. Nielsen & Lydiche. Redner, R. A., & Walker, H. F. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2), 195–239. https://doi.org/10.1137/1026034 Revelle, W. (2020). psych: Procedures for psychological, psychometric, and personality research [R package version 2.0.9]. Northwestern University. Evanston, Illinois. https://CRAN.R-project.org/package=psych Romney, A. K., Batchelder, W. H., & Weller, S. C. (1987). Recent applications of cultural consensus theory. American Behavioral Scientist, 31(2), 163–177. https://doi.org/10.1177/000276487031002003 Romney, A. K., Weller, S. C., & Batchelder, W. H. (1986). Culture as consensus: A theory of culture and informant accuracy. American Anthropologist, 88(2), 313–338. https://doi.org/10.1525/aa.1986.88.2.02a00020 Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12(4), 573–604. https://doi.org/10.3758/bf03196750 Rouder, J. N., & Morey, R. D. (2009). The nature of psychological thresholds. Psychological Review, 116, 655–660. https://doi.org/10.1037/a0016413 Spearman, C. (1904). ’General intelligence,’ objectively determined and measured. The American Journal of Psychology, 15(2), 201–293. https://doi.org/10.1037/11491-006 Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583–639. https://doi.org/10.1111/1467-9868.00353 Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2014). The deviance information criterion: 12 years on. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 76(3), 485–493. https://doi.org/10.1111/1467-9868.00353 Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(4), 795–809. https://doi.org/10.1111/1467-9868.00265 Su, Y.-S., & Yajima, M. (2020). R2jags: Using R to run ‘JAGS’ [R package version 0.6-1]. http://CRAN.R-project.org/package=R2jags Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(12), 3571–3594. https://jmlr.org/papers/v11/watanabe10a.html Watson, C. S., & Bourbon, W. T. (1965). Rating scales and two‐state threshold models. The Journal of the Acoustical Society of America, 38(4), 667–668. https://doi.org/10.1121/1.1909772 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85644 | - |
| dc.description.abstract | 文化共識理論(cultural consensus theory, CCT),係由 Batchelder 與其同事於 1980 年代中期發展出一套認知基底的方法學來評估出受訪者們之間的共識,與傳統的測驗理論不同在於,研究者對於所謂的文化「共識/正確」答案事前是未知的。CCT 最主要的目的在於揭露某一文化群體下的成員們所共有的文化知識、偏好或是信念。在受訪者們有相同文化共識下,General Condorcet Model(GCM,CCT 架構下的模型之一),卻只能專門處理二元變項的回答資料(如:真/假)。本研究延伸原先 GCM 的模型架構,並結合 Luce-Krantz 的閾值理論而提出一個新的廣義模型,命名為 General Condorcet-Luce-Kranztz model(GCLK),進而處理次序類別型的資料(包括:用李克特量表的問卷資料),此次序類別回答選項允許受訪者針對不同道題目,在回答上能表達不同的信心程度。除了找出問卷題目的共識答案外,GCLK 同時能估計出回答題目時的各項特徵,包括:題目難度、受訪者的能力與猜測偏誤。在 GCLK 公理化的設定下,本研究證明出的理論能幫助研究者偵測在同一筆的資料中存有多少組共識群體;本研究也利用階層式貝氏模型結合馬可夫鏈蒙地卡羅隨機取樣法,來估計出各項參數的後驗分配,並做了後驗預測檢驗來確認模型假設的合理性。本研究最終透過一系列的模擬研究,展示 GCLK 的可行性,以及利用貝氏估計方法印證此模型也有良好的參數回復能力。 | zh_TW |
| dc.description.abstract | Cultural consensus theory (CCT), developed by Batchelder and colleagues in the mid-1980s, is a cognitively driven methodology to assess informants' consensus in which the culturally correct answers are unknown to researchers in prior. The primary goal of CCT is to uncover the cultural knowledge, preference, or beliefs shared by group members. One of the CCT models, called the General Condorcet Model (GCM), deals with dichotomous (e.g., true/false) response data which were collected from a group of informants who share the same cultural knowledge. I propose a new model, called the General Condorcet-Luce-Kranztz model (GCLK), which incorporates the GCM with the Luce-Krantz threshold theory. The GCLK accounts for ordinal categorical data (including Likert-type questionnaires) in which informants can express different confidence levels when answering the items/questions. In addition to finding out the consensus truth to the items, the GCLK also estimates response characteristics, including the item difficulty and the informant's competency and guessing bias. I axiomatize the GCLK and develop a theory that can help researchers detect the number of cultures for a given data set. I utilize the hierarchical Bayesian modeling approach and the Markov chain Monte Carlo sampling method for estimation; a posterior predictive check is established to verify the central assumptions of the model. Through a series of simulation studies, I evaluate the model's applicability and find that the GCLK performs well on parameter recovery. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:20:26Z (GMT). No. of bitstreams: 1 U0001-0105202223520600.pdf: 3504809 bytes, checksum: c3c5b8797be78538c31c5b6f487f7bc1 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 摘要 iv Abstract v Contents vii List of Tables ix List of Figures x 1 Introduction 1 2 The General Condorcet-Luce-Krantz Model 5 2.1 Specifications of the GCM 5 2.2 The Low Threshold Theory and the Confidence Response 8 2.3 Specifications of the GCLK 10 2.4 A Property Inspired by Spearman’s Tetrad Law 16 3 Hierarchical Bayesian Model of the GCLK 22 3.1 Hierarchical Specifications of the GCLK 22 3.2 Bayesian Inference 26 3.3 Posterior Predictive Check and Model Selection 29 viidoi:10.6342/NTU202200739 3.4 General Routine for Fitting the GCLK to Data 32 4 Simulation Study 34 4.1 Model Recovery of the GCLK Simulated Data With One Culture 35 4.2 Model Recovery of the GCLK Simulated Data With Three Cultures 48 4.3 Model Selection and Accuracy of the GCLK 51 5 General Discussion 56 References 61 Appendix A Proof of Theorem 1 67 Appendix B JAGS Model Code for GCLK Constrained to One Culture 72 Appendix C JAGS Model Code for the Multicultural GCLK 74 | |
| dc.language.iso | en | |
| dc.subject | 次序類別資料 | zh_TW |
| dc.subject | 階層式貝氏模型 | zh_TW |
| dc.subject | 文化共識理論 | zh_TW |
| dc.subject | 信心回答 | zh_TW |
| dc.subject | 閾值理論 | zh_TW |
| dc.subject | 潛在類別模型 | zh_TW |
| dc.subject | hierarchical Bayesian model | en |
| dc.subject | threshold theory | en |
| dc.subject | response confidence | en |
| dc.subject | ordinal categorical data | en |
| dc.subject | latent class model | en |
| dc.subject | cultural consensus theory | en |
| dc.title | 文化共識理論結合 Luce-Krantz 閾值理論處理次序類別資料:模擬研究 | zh_TW |
| dc.title | Incorporating the Luce-Krantz threshold model into the cultural consensus theory for ordinal categorical data: A simulation study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張仁和(Jen-Ho Chang),彭昭英(Chao-Ying Joanne Peng),蕭朱杏(Chuhsing Kate Hsiao) | |
| dc.subject.keyword | 文化共識理論,階層式貝氏模型,潛在類別模型,次序類別資料,信心回答,閾值理論, | zh_TW |
| dc.subject.keyword | cultural consensus theory,hierarchical Bayesian model,latent class model,ordinal categorical data,response confidence,threshold theory, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU202200739 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-06-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 心理學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0105202223520600.pdf | 3.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
