Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 臨床動物醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85637
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李繼忠(Jih-Jong Lee)
dc.contributor.authorWen-Ting Tingen
dc.contributor.author丁文廷zh_TW
dc.date.accessioned2023-03-19T23:20:16Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-06-27
dc.identifier.citation1. Gu YJ and Boonstra PW. Selection of priming solutions for cardiopulmonary bypass in adults. Multimed Man Cardiothorac Surg. 2005.001198. 2. Liskaser FJ, Bellomo R, Hayhoe M, Story D, Poustie S, Smith B, Letis A and Bennett M. Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis. Anesthesiology. 2000;93: 1170-1173. 3. Lilley A. The selection of priming fluids for cardiopulmonary bypass in the UK and Ireland. Perfusion. 2002;17: 315-319. 4. Himpe D. Colloids versus crystalloids as priming solutions for cardiopulmonary bypass: a meta-analysis of prospective, randomised clinical trials. Acta Anaesthesiol Belg. 2003;54: 207-215. 5. Russell JA, Navickis RJ and Wilkes MM. Albumin versus crystalloid for pump priming in cardiac surgery: meta-analysis of con- trolled trials. J Cardiothorac Vasc Anesth. 2004;18: 429-437. 6. Goto R, Tearle H, Steward DJ and Ashmore PG. Myocardial edema and ventricular function after cardioplegia with added mannitol. Can J Anaesth. 1991;38: 7-14. 7. Osthaus WA, Sievers J, Breymann T and Suempelmann R. Bicarbonate buffered ultrafiltration leads to a physiologic priming solution in pediatric cardiac surgery. Interact Cardiovasc Thorac Surg. 2008;7: 969-972. 8. Takkunen O, Salmenpera M and Heinonen J. Comparison of Ringer’s acetate and lactate solutions as a prime for cardiopulmonary bypass. Ann Chir Gynaecol. 1985;74: 223-227. 9. Himpe D, Neels H, De Hert S and Van Cauwelaert P. Adding lactate to the prime solution during hypothermic cardiopulmonary bypass: a quantitative acid-base analysis. Br J Anaesth. 2003;90: 440-445. 10. Morgan TJ, Power G, Venkatesh B and Jones MA. Acid-base effects of a bicarbonate-balanced priming fluid during cardiopulmonary bypass: comparison with Plasma-Lyte 148. A randomised single-blinded study. Anaesth Intensive Care. 2008;36: 822-829. 11. Nahas GG, Sutin KM, Fermon C, Streat S, Wiklund L, Wahlander S, Yellin P, Brasch H, Kanchuger M, Capan L, Manne J, Helwig H, Gaab M, Pfenninger E, Wetterberg T, Holmdahl M and Turndorf H. Guidelines for the Treatment of Acidaemia with THAM. Drugs. 1998;55: 191-224. 12. Casey JD, Brown RM and Semler MW. Resuscitation fluids. Curr Opin Crit Care. 2018;24: 512-518. 13. Finfer S, Liu B, Taylor C, Bellomo R, Billot L, Cook D, Du B, McArthur C, Myburgh J and SAFE TRIPS Investigators. Resuscitation fluid use in critically ill adults: an international cross sectional study in 391 intensive care units. Crit Care. 2010;14: R185. 14. Perel P and Roberts I. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2012;6: CD000567. 15. Mutter TC, Ruth CA and Dart AB. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 2013;7: CD007594. 16. Lewis SR, Pritchard MW, Evans DJ, Butler AR, Alderson P, Smith AF and Roberts I. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev. 2008;8: CD000567. 17. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39: 165-228. 18. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS, Escobar GJ and Angus DC. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315: 762-774. 19. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL and Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315: 801-810. 20. Kimmoun A, Novy E, Auchet T, Ducrocq N and Levy B. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care. 2015;19: 175. 21. Kraut JA and Madias NE. Lactic acidosis: current treatments and future directions. Am J Kidney Dis. 2016;68: 473-482. 22. Bonanno FG. Hemorrhagic shock: The “physiology approach”. J Emerg Trauma Shock 2012;5:285-295. 23. Gutierrez G, Reines HD, Wulf-Gutierrez ME. Clinical review: hemorrhagic shock. Crit Care 2004;8:373-381. 24. Spinella PC, Holcomb JB. Resuscitation and transfusion principles for traumatic hemorrhagic shock. Blood Rev 2009;23:231-240. 25. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med 2013;369:1243-1251. 26. Lira A, Pinsky MR. Choices in fluid type and volume during resuscitation: impact on patient outcomes. Ann Intensive Care 2014;4:38. 27. Singer M. Management of fluid balance: a European perspective. Curr Opin Anaesthesiol 2012;25:96-101. 28. Canabal JM, Kramer DJ. Management of sepsis in patients with liver failure. Curr Opin Crit Care 2008;14:189-197. 29. Fruchterman TM, Spain DA, Wilson MA, Harris PD, Garrison RN. Selective microvascular endothelial cell dysfunction in the small intestine following resuscitated hemorrhagic shock. Shock 1998;10:417-422. 30. Hurt RT, Zakaria R, Matheson PJ, Cobb ME, Parker JR, Garrison RN. Hemorrhage-induced hepatic injury and hypoperfusion can be prevented by direct peritoneal resuscitation. J Gastrointest Surg 2009;13:587-594. 31. Zakaria R, Spain DA, Harris PD, Garrison RN. Resuscitation regimens for hemorrhagic shock must contain blood. Shock 2002;18:567-573. Polderman KH, Bloemers FW, Peerdeman SM and Girbes AR. Hypomagnesemia and hypophosphatemia at admission in patients with severe head injury. Crit Care Med. 2000;28: 2022-2025. 32. Lee JJ, Kim YS and Jung HH . Acute serum sodium concentration changes in pediatric patients undergoing cardiopulmonary bypass and the association with postoperative outcomes. Springerplus. 2015;4: 641. 33. Bilal M, Haseeb A, Khan MH, Khetpal A, Saad M, Arshad MH, Dar MI, Hasan N, Rafiq R, Sherwani M, Abbas H, Sultan A and Inam M. Assessment of Blood Glucose and Electrolytes during Cardiopulmonary Bypass in Diabetic and Non-Diabetic Patients of Pakistan. Glob J Health Sci. 2016;8: 159-164. 34. Anand KJ, Hansen DD and Hickey PR. Hormonal-metabolic stress responses in neonates undergoing cardiac surgery. Anesthesiology. 1990;73: 661-670. 35. Brix-Christensen V. The systemic inflammatory response after cardiac surgery with cardiopulmonary bypass in children. Acta Anaesthesiol Scand. 2001;45: 671-679. 36. Yates AR, Dyke PC 2nd, Taeed R, Hoffman TM, Feltes TF and Cua CL. Hyperglycemia is a marker for poor outcome in the postoperative pediatric cardiac patient. Pediatr Crit Care Med. 2006;7: 351-355. 37. Falcao G, Ulate K, Kouzekanani K, Bielefeld MR and Rotta AT. Impact of postoperative hyperglycemia following surgical repair of congenital cardiac defects. Pediatr Cardiol. 2008;29: 628-636. 38. Dawson PJ, Bjorksten AR, Blake DW and Goldblatt JC. The effects of cardiopulmonary bypass on total and unbound plasma concentrations of propofol and midazolam. J Cardiothorac Vasc Anesth. 1997;11: 556-561. 39. Gore DC, Chinkes D, Heggers J, Herndon DN, Wolf SE and Desai M. Association of hyperglycemia with increased mortality after severe burn injury. J Trauma. 2001;51: 540-544. 40. Munoz R, Laussen PC and Palacio G. Changes in whole blood lactate levels during CPB for surgery for congenital cardiac disease: an early indicator of morbidity and mortality. J Thorac Cardiovasc Surg. 2000;119: 155-162. 41. Shinde SB, Golam KK, Kumar P and Patil ND. Blood lactate levels during cardiopulmonary bypass for valvular heart surgery. Ann Card Anaesth. 2005;8: 39-44. 42. Thygesen K, Mair J, Katus H, Plebani M, Venge P, Collinson P, Lindahl B, Giannitsis E, Hasin Y, Galvani M, Tubaro M, Alpert JS, Biasucci LM, Koenig W, Mueller C, Huber K, Hamm C and Jaffe AS. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J. 2010;31: 2197-2204. 43. Twerenbold R, Jaffe A, Reichlin T, Reiter M and Mueller C. High-sensitive troponin T measurements: what do we gain and what are the challenges? Eur Heart J. 2012;33: 579-586. 44. Zymliński R, Sokolski M, Siwolowski P, Biegus J, Nawrocka S, Jankowska EA, Todd J, Yerramilli R, Estis J, Banasiak W and Ponikowski P. Elevated troponin I level assessed by a new high-sensitive assay and the risk of poor outcomes in patients with acute heart failure. Int J Cardiol. 2017;230: 646-652. 45. Mohammed AAO, Hussein SAA and Abdulrahman MAM. The clinical significance of cardiac troponins in medical practice. J Saudi Heart Assoc. 2011;23: 3-11. 46. Kimmoun A, Novy E, Auchet T, Ducrocq N and Levy B. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Critical care. 2015;19: 175. 47. Ting WT, Chang RW, Wang CH, Chen YS and Lee JJ. Comparison of the trometamol-balanced solution with two other crystalloid solutions for fluid resuscitation of a rat hemorrhagic model. J Vet Sci. 2020;21: e6. 48. Nemzek JA, Hugunin KM and Opp MR. Modeling sepsis in the laboratory: Merging sound science with animal well-being. Comp Med. 2008;58: 120-128. 49. Velissaris D, Karamouzos V, Pierrakos C, Aretha D and Karanikolas M. Hypomagnesemia in critically Ill sepsis patients. J Clin Med Res. 2015;7: 911-918. 50. Illner H and Shires GT. Changes in sodium, potassium, and adenosine-triphosphate contents of red-blood-cells in sepsis and septic shock. Circ Shock. 1982;9: 259-267. 51. Baker SB and Worthley LIG. The essentials of calcium, magnesium and phosphate metabolism: Part II. Disorders. Crit Care Resusc. 2002;4: 307-315. 52. Hansen BA and Bruserud Ø. Hypomagnesemia in critically ill patients. J Intensive Care. 2018;6: 21. 53. Cumming AD. Changes in plasma calcium during septic shock. J Accid Emerg Med. 1994;11: 3-7. 54. Kelly A and Levine MA. Hypocalcemia in the critically ill patient. J Intensiv Care Med. 2013;28: 166-177. 55. Collage RD, Howell GM, Zhang X, Stripay JL, Lee JS, Angus DC and Rosengart MR. Calcium supplementation during sepsis exacerbates organ failure and mortality via calcium/calmodulin-dependent protein kinase kinase (CaMKK) signaling. Crit Care Med. 2013;41: e352-60. 56. Dotson B, Larabell P, Patel J, Wong K, Qasem L, Arthur W, Leiberman C, Whittaker P and Tennenberg SD. Calcium administration is associated with adverse outcomes in critically ill patients receiving parenteral nutrition: results from a natural experiment created by a calcium gluconate shortage. Pharmacotherapy. 2016;36: 1185-1190. 57. Miller SI, Wallace RJ Jr, Musher DM, Septimus EJ, Kohl S and Baughn RE. Hypoglycemia as a manifestation of sepsis. Am J Med. 1980;68: 649-654. 58. Thompson BT. Glucose control in sepsis. Clin Chest Med. 2008;29: 713-720. 59. Chertoff J, Chisum M, Garcia B and Lascano J. Lactate kinetics in sepsis and septic shock: a review of the literature and rationale for further research. J Intensive Care. 2015;3: 39. 60. Lee SM and An WS. New clinical criteria for septic shock: serum lactate level as new emerging vital sign. J Thorac Dis. 2016;8: 1388-1390. 61. Shankar-Hari M, Phillips GS, Levy ML, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD, Singer M and Sepsis Definitions Task Force. Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315: 775-787. 62. Majumdar A. Sepsis-induced acute kidney injury. Indian J Crit Care Med. 2010;14: 14-21. 63. Zarjou A and Agarwal A. Sepsis and acute kidney injury. J Am Soc Nephrol. 2011;22: 999-1006. 64. Wan L, Bagshaw SM, Langenberg C, Saotome T, May C and Bellomo R. Pathophysiology of septic acute kidney injury: what do we really know? Crist Care Med. 2008;36: S198-S203. 65. Bagshaw SM, Lapinsky S, Dial S, Arabi Y, Dodek P, Wood G, Ellis P, Guzman J, Marshall J, Parrillo JE, Skrobik Y, Kumar A and Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 2009;35: 871-881. 66. Crouser E, Exline M, Knoell D and Wewers MD. Sepsis: links between pathogen sensing and organ damage. Curr Pharm. 2008;14: 1840-1852. 67. Strnad P, Tacke F, Koch A and Trautwein C. Liver-Guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol. 2017;14: 55-66. 68. Takegawa R, Kabata D, Shimizu K, Hisano S, Ogura H, Shintani A and Shimazu T. Serum albumin as a risk factor for death in patients with prolonged sepsis: An observational study. J Crit Care. 2019;51: 139-144. 69. Muftuoglu MA, Aktekin A, Ozdemir NC and Saglam A. Liver injury in sepsis and abdominal compartment syndrome in rats. Surg Today. 2006;36: 519-524. 70. Woźnica EA, Inglot M, Woźnica RK and Łysenko L. Liver dysfunction in sepsis. Adv Clin Exp Med. 2018;27: 547-551. 71. Hayden SJ, Albert TJ, Watkins TR and Swenson ER. Anemia in critical illness: insights into etiology, consequences, and management. Am J Respir Crit Care Med. 2012;185: 1049-1057. 72. Straat M, van Bruggen R, de Korte D and Juffermans NP. Red blood cell clearance in inflammation. Transfus Med Hemother. 2012;39: 353-361. 73. Bateman RM, Sharpe MD, Singer M and Ellis CG. The effect of Sepsis on the Erythrocyte. Int J Mol Sci. 2017;18: 1932. 74. Lee HB and Blaufox MD. Blood volume in the rat. J Nucl Med. 1985;26: 72-76. 75. Kohut LK, Darwiche SS, Brumfield JM, Frank AM, Billiar TR. Fixed volume or fixed pressure: a murine model of hemorrhagic shock. J Vis Exp 2011;52:2068. 76. Bouchard JE, Mehta RL. Fluid balance issues in the critically ill patient. Contrib Nephrol 2010;164:69-78. 77. Krausz MM. Initial resuscitation of hemorrhagic shock. World J Emerg Surg 2006;1:14. 78. Lee JW. Fluid and electrolyte disturbances in critically ill patients. Electrolyte Blood Press 2010;8:72-81. 79. Spaniol JR, Knight AR, Zebley JL, Anderson D, Pierce JD. Fluid resuscitation therapy for hemorrhagic shock. J Trauma Nurs 2007;14:152-160. 80. Wolf MB. Hyperglycemia-induced hyponatremia: reevaluation of the Na+ correction factor. J Crit Care 2017;42:54-58. 81. Besunder JB, Smith PG. Toxic effects of electrolyte and trace mineral administration in the intensive care unit. Crit Care Clin 1991;7:659-693. 82. Drueke TB, Lacour B. Disorders of calcium, phosphate and magnesium metabolism. In: Feehally J, Floege J, Johnson RJ (eds.). Comprehensive Clinical Nephrology, 3rd ed. pp. 37-138, Mosby, Philadelphia, 2007. 83. Zaloga GP. Hypocalcemia in critically ill patients. Crit Care Med 1992;20:251-262. 84. Zivin JR, Gooley T, Zager RA, Ryan MJ. Hypocalcemia: a pervasive metabolic abnormality in the critically ill. Am J Kidney Dis 2001;37:689-698. 85. Forsythe RM, Wessel CB, Billiar TR, Angus DC, Rosengart MR. Parenteral calcium for intensive care unit patients. Cochrane Database Syst Rev 2008;4:CD006163. 86. Hirasawa H, Oda S, Nakamura M. Blood glucose control in patients with severe sepsis and septic shock. World J Gastroenterol 2009;15:4132-4136. 87. Losser MR, Damoisel C, Payen D. Bench-to-bedside review: glucose and stress conditions in the intensive care unit. Crit Care 2010;14:231. 88. Wernly B, Lichtenauer M, Hoppe UC, Jung C. Hyperglycemia in septic patients: an essential stress survival response in all, a robust marker for risk stratification in some, to be messed with in none. J Thorac Dis 2016;8:E621-E624. 89. Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol 2012;2:1303-1353. 90. Mayeur N, Minville V, Jaafar A, Allard J, Al Saati T, Guilbeau-Frugier C, Fourcade O, Girolami JP, Schaak S, Tack I. Morphologic and functional renal impact of acute kidney injury after prolonged hemorrhagic shock in mice. Crit Care Med 2011;39:2131-2138. 91. Wang L, Song J, Buggs J, Wei J, Wang S, Zhang J, Zhang G, Lu Y, Yip KP, Liu R. A new mouse model of hemorrhagic shock-induced acute kidney injury. Am J Physiol Renal Physiol 2017;312:F134-F142. 92. Koskinas J, Gomatos IP, Tiniakos DG, Memos N, Boutsikou M, Garatzioti A, Archimandritis A, Betrosian A. Liver histology in ICU patients dying from sepsis: a clinico-pathological study. World J Gastroenterol 2008;14:1389-1393. 93. Soleimanpour H, Safari S, Rahmani F, Nejabatian A, Alavian SM. Hepatic shock differential diagnosis and risk factors: a review article. Hepat Mon 2015;15:e27063. 94. Akkose S, Ozgurer A, Bulut M, Koksal O, Ozdemír F, Ozguç H. Relationships between markers of inflammation, severity of injury, and clinical outcomes in hemorrhagic shock. Adv Ther 2007;24:955-962. 95. Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc 2013;88:1127-1140. 96. Lee HB, Blaufox MD. Blood volume in the rat. J Nucl Med 1985;26:72-76.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85637-
dc.description.abstract復甦溶液廣泛被認為是急重症治療的黃金準則,而依成分的不同又可區分為晶體溶液跟膠體溶液兩種,但是何者為最適合的復甦溶液在現今依舊爭議不斷,仍取決於各區性的差異、臨床醫師的經驗以及醫療機構的偏好。在本研究中,我們期望能透過白豬的體外循環模型以及大鼠的敗血性和出血性模型來探討三羥甲基胺基甲烷均衡溶液(TBS)的應用,運用檢測血液生化學、離子以及血氣的變化來評估TBS的效用。研究結果顯示TBS與其他復甦溶液在不同模型下並無顯著差異,但是在減緩代謝性酸血症的預後上以及減緩體外循環的心肌傷害上有顯著差異。總結來說,TBS在本研究的體外循環模型、大鼠敗血性以及出血性模型中提供了安全並且可行的另一種治療策略。zh_TW
dc.description.abstractA resuscitation solution is widely considered as the cornerstone of treatment for critically ill patients. Resuscitation solutions can contain crystalloids and colloids. Nevertheless, determining the ideal resuscitation solution is based on regional variations, clinician experiences, and institute preferences; thus, this topic has been a matter of debate. In this study, we aimed to explore the application of trometamol-balanced solution (TBS) that were identified by white pig cardiopulmonary bypass (CPB) model and rat diseased models. The biochemical parameters, electrolytes, and blood gas parameters were performed using an Abbott i-STAT analyzer to investigate the effect of using TBS on hemodynamic parameters. The biochemical parameters, electrolytes, and blood gas parameters implied similar trends and the majority of data showed no considerable changes between TBS and the other resuscitation solutions. However, TBS might be more effective in metabolic acidosis and myocardial damage alleviation. In summary, TBS is safe and feasible in this study and may offer advantages in hemorrhagic shock, septic shock and as priming solution in CPB.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:20:16Z (GMT). No. of bitstreams: 1
U0001-2306202214020000.pdf: 2635930 bytes, checksum: 56fab6cb15d91bba7e15db7342d97350 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents論文口試委員會審定書 i 中文摘要 ii Abstract iii Content iv Chapter I Introduction 1 1.1 Priming solution for CPB 2 1.2 Fluid resuscitation for septic shock 4 1.3 Fluid resuscitation for hemorrhagic shock 6 1.4 What is trometamol 8 Chapter II TBS for CPB in a white pig model 9 2.1 Rationale 10 2.2 Materials and methods 11 2.3 Results 15 2.4 Discussion 18 Chapter III TBS in a rat septic model 22 3.1 Rationale 23 3.2 Material sand Methods 24 3.3 Results 27 3.4 Discussion 30 Chapter IV TBS in a rat hemorrhagic model 37 4.1 Rationale 38 4.2 Materials and Methods 39 4.3 Results 42 4.4 Discussion 44 Chapter V Conclusion 50 Chapter VI References 52 Chapter VII Tables, Figures and Figure legends 65 Chapter VIII Publication list 97
dc.language.isozh-TW
dc.subject出血性休克zh_TW
dc.subject出血性休克zh_TW
dc.subject敗血性休克zh_TW
dc.subject三羥甲基胺基甲烷均衡溶液zh_TW
dc.subject體外循環zh_TW
dc.subject復甦溶液zh_TW
dc.subject復甦溶液zh_TW
dc.subject體外循環zh_TW
dc.subject三羥甲基胺基甲烷均衡溶液zh_TW
dc.subject敗血性休克zh_TW
dc.subjectTBSen
dc.subjectCPBen
dc.subjectCPBen
dc.subjectResuscitation solutionen
dc.subjectTBSen
dc.subjectResuscitation solutionen
dc.subjecthemorrhagic shocken
dc.subjectseptic shocken
dc.subjecthemorrhagic shocken
dc.subjectseptic shocken
dc.title新式復甦溶液於白豬體外循環及大鼠疾病模式下之比較zh_TW
dc.titleComparison of the new designed resuscitation solution in white pig cardiopulmonary bypass and rat diseased modelsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.coadvisor陳益祥(Yih-Sharng Chen)
dc.contributor.oralexamcommittee廖泰慶(Tai-Ching Liao),王尚麟(Shang-Lin Wang),謝明順(Ming-Shun Hsieh),詹昆衛(Kun-Wei Chan),林荀龍(Shiun-Long Lin)
dc.subject.keyword復甦溶液,體外循環,三羥甲基胺基甲烷均衡溶液,敗血性休克,出血性休克,zh_TW
dc.subject.keywordResuscitation solution,CPB,TBS,septic shock,hemorrhagic shock,en
dc.relation.page98
dc.identifier.doi10.6342/NTU202201073
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-06-28
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept臨床動物醫學研究所zh_TW
dc.date.embargo-lift2022-07-05-
顯示於系所單位:臨床動物醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-2306202214020000.pdf2.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved