請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85636完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳哲夫(Jeffrey D. Ward) | |
| dc.contributor.author | Wei-Ting Tang | en |
| dc.contributor.author | 唐偉庭 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:20:14Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-27 | |
| dc.identifier.citation | [1] Caballero, J. A., & Grossmann, I. E. (2004). Design of distillation sequences: from conventional to fully thermally coupled distillation systems. Computers & chemical engineering, 28(11), 2307-2329. [2] Blancarte-Palacios, J. L., Bautista-Valdés, M. N., Hernández, S., Rico-Ramírez, V., & Jiménez, A. (2003). Energy-efficient designs of thermally coupled distillation sequences for four-component mixtures. Industrial & engineering chemistry research, 42(21), 5157-5164. [3] Lee, H. Y., Chen, C. Y., Chen, J. L., Alcántara-Avila, J. R., Terasaki, M., Sotowa, K. I., & Horikawa, T. (2019). Design and control of diphenyl carbonate reactive distillation process with thermally coupled and heat-integrated stages configuration. Computers & Chemical Engineering, 121, 130-147. [4] Dejanović, I., Matijašević, L., & Olujić, Ž. (2010). Dividing wall column—a breakthrough towards sustainable distilling. Chemical Engineering and Processing: Process Intensification, 49(6), 559-580. [5] Yang, A., Wei, R., Sun, S., Wei, S. A., Shen, W., & Chien, I. L. (2018). Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes. Industrial & Engineering Chemistry Research, 57(23), 8036-8056. [6] Rawlings, E. S., Chen, Q., Grossmann, I. E., & Caballero, J. A. (2019). Kaibel column: Modeling, optimization, and conceptual design of multi-product dividing wall columns. Computers & Chemical Engineering, 125, 31-39. [7] Kaibel, G. (1987). Distillation columns with vertical partitions. Chemical engineering & technology, 10(1), 92-98. [8] Wang, H., Zhou, Q., Su, W., Ji, P., Wang, Z., & Li, C. (2020). Optimization and control of vertical double wall dividing‐wall column for separating a quaternary system. The Canadian Journal of Chemical Engineering, 98(10), 2166-2186. [9] Aurangzeb, M., & Jana, A. K. (2019). Double-partitioned dividing wall column for a multicomponent azeotropic system. Separation and Purification Technology, 219, 33-46. [10] Tututi-Avila, S., Domínguez-Díaz, L. A., Medina-Herrera, N., Jiménez-Gutiérrez, A., & Hahn, J. (2017). Dividing-wall columns: Design and control of a kaibel and a satellite distillation column for BTX separation. Chemical Engineering and Processing: Process Intensification, 114, 1-15. [11] Asprion, N., & Kaibel, G. (2010). Dividing wall columns: fundamentals and recent advances. Chemical Engineering and Processing: Process Intensification, 49(2), 139-146. [12] Premkumar, R., & Rangaiah, G. P. (2009). Retrofitting conventional column systems to dividing-wall columns. Chemical Engineering Research and Design, 87(1), 47-60. [13] Andrecovich, M. J., & Westerberg, A. W. (1985). A simple synthesis method based on utility bounding for heat‐integrated distillation sequences. AIChE journal, 31(3), 363-375. [14] Cheng, H. C., & Luyben, W. L. (1985). Heat-integrated distillation columns for ternary separations. Industrial & Engineering Chemistry Process Design and Development, 24(3), 707-713. [15] Annakou, O., & Mizsey, P. (1996). Rigorous comparative study of energy-integrated distillation schemes. Industrial & engineering chemistry research, 35(6), 1877-1885. [16] Ni, Y. W., Lin, W. E., Tang, W. T., & Ward, J. D. (2021). Plantwide optimization coupled with column sequencing and stacking using a process simulator automation server. Computers & Chemical Engineering, 146, 107196. [17] Lin, W. E., Huang, P. H., & Ward, J. D. (2020). Regions of optimality for separation system synthesis using rigorous modeling, stochastic optimization, and column stacking. Industrial & Engineering Chemistry Research, 59(26), 12164-12175. [18] Glinos, K. N., Nikolaides, I. P., & Malone, M. F. (1986). New complex column arrangements for ideal distillation. Industrial & Engineering Chemistry Process Design And Development, 25(3), 694-699. [19] Lyu, H., Li, S., Cui, C., Yu, X., & Sun, J. (2021). Superstructure modeling and stochastic optimization of side-stream extractive distillation processes for the industrial separation of benzene/cyclohexane/cyclohexene. Separation and Purification Technology, 257, 117907. [20] Zhang, S., Luo, Y., & Yuan, X. (2021). A novel stochastic optimization method to efficiently synthesize large‐scale nonsharp distillation systems. AIChE Journal, 67(9), e17328. [21] Tang, W. T., & Ward, J. D. (2022). Stacked complex sequences for ternary zeotropic distillation. Computers & Chemical Engineering, 161, 107744. [22] Niu, F., Liu, Y., Wang, X., & Wang, X. (2021). Separation of methylcyclopentane, cyclohexane and methylcyclohexane mixture by atmospheric distillation. The Journal of Chemical Thermodynamics, 161, 106535. [23] Yuan, Y., Li, D., Zhang, L., Zhu, Y., Wang, L., & Li, W. (2016). Development, status, and prospects of coal tar hydrogenation technology. Energy Technology, 4(11), 1338-1348. [24] Cui, C., Zhang, X., Lyu, H., Wang, S., Sun, J., Qu, Y., ... & Zhang, Q. (2021). Process intensification in ternary distillation via comparative grassroots and retrofit designs: A case study of distilling an industrial multicomponent C6 alkane mixture in caprolactam processing. Chemical Engineering and Processing-Process Intensification, 164, 108423. [25] A.J. Brugma,US 2,295,256, 1942 (1936), Priority data NL41,850 (1936) [26] Flores, O. A., Cardenas, J. C., Hernández, S., & Rico-Ramírez, V. (2003). Thermodynamic analysis of thermally coupled distillation sequences. Industrial & engineering chemistry research, 42(23), 5940-5945. [27] Petlyuk, F. B. (1965). Thermodynamically optimal method for separating multicomponent mixtures. Int. Chem. Eng., 5, 555-561. [28] Agrawal, R., & Fidkowski, Z. T. (1998). Are thermally coupled distillation columns always thermodynamically more efficient for ternary distillations?. Industrial & engineering chemistry research, 37(8), 3444-3454. [29] Saxena, N., Mali, N., & Satpute, S. (2017). Study of thermally coupled distillation systems for energy-efficient distillation. Sādhanā, 42(1), 119-128. [30] Hernández, S., Pereira‐Pech, S., Jiménez, A., & Rico‐Ramírez, V. (2003). Energy efficiency of an indirect thermally coupled distillation sequence. The Canadian Journal of Chemical Engineering, 81(5), 1087-1091. [31] Parra-Santiago, J. J., Guerrero-Fajardo, C. A., & Sodré, J. R. (2015). Distillation process optimization for styrene production from a styrene-benzene-toluene system in a Petlyuk column. Chemical Engineering and Processing: Process Intensification, 98, 106-111. [32] Kim, Y. H. (2001). Rigorous design of fully thermally coupled distillation column. Journal of chemical engineering of Japan, 34(2), 236-243. [33] E.W Luster, US 1,915,681,1933 (1930); Apparatus for fractionating cracked products, with two feeds and one sideproduct. [34] R.O. Wright, US 2,471,134, 1949 (1946); Fractionation apparatus. [35] Li, C., Zhang, Q., Xie, J., Fang, J., & Li, H. (2020). Design, optimization, and industrial-scale experimental study of a high-efficiency dividing wall column. Separation and Purification Technology, 247, 116891. [36] Aurangzeb, M., & Jana, A. K. (2016). Dividing wall column: Improving thermal efficiency, energy savings and economic performance. Applied thermal engineering, 106, 1033-1041. [37] Fang, J., Zhao, H., Qi, J., Li, C., Qi, J., & Guo, J. (2015). Energy conserving effects of dividing wall column. Chinese Journal of Chemical Engineering, 23(6), 934-940. [38] Engelien, H. K., & Skogestad, S. (2005). Multi-effect distillation applied to an industrial case study. Chemical Engineering and Processing: Process Intensification, 44(8), 819-826. [39] Wang, L., Tian, F., Luo, Y., Yuan, X., & Yu, G. (2018). A generalized ease of separation index for selection of optimal configuration of ternary distillation. CHEMICAL ENGINEERING, 69. [40] Khalifa, M., & Emtir, M. (2009). Rigorous optimization of heat-integrated and Petlyuk column distillation configurations based on feed conditions. Clean Technologies and Environmental Policy, 11(1), 107-113. [41] Emtir, M., & Fonyo, Z. (2001). Rigorous simulation of energy integrated and thermally coupled distillation schemes for ternary mixture. Applied Thermal Engineering, 21(13-14), 1299-1317. [42] Tarjani, A. J., Toth, A. J., Nagy, T., Haaz, E., Valentinyi, N., Andre, A., ... & Mizsey, P. (2018). Thermodynamic and exergy analysis of energy-integrated distillation technologies focusing on dividing-wall columns with upper and lower partitions. Industrial & Engineering Chemistry Research, 57(10), 3678-3684. [43] Pham, T. N., Long, N. V. D., Shin, J., & Lee, M. (2018). A cost-effective retrofit of conventional distillation sequence to dividing-wall prefractionator configuration. Computers & Chemical Engineering, 110, 93-105. [44] Liu, Z. Y., & Jobson, M. (1999). The effect of operating pressure on distillation column throughput. Computers & Chemical Engineering, 23, S831-S834. [45] Emtir, M., & Etoumi, A. (2009). Enhancement of conventional distillation configurations for ternary mixtures separation. Clean Technologies and Environmental Policy, 11(1), 123-131. [46] Rooks, R. E., Malone, M. F., & Doherty, M. F. (1996). A geometric design method for side-stream distillation columns. Industrial & engineering chemistry research, 35(10), 3653-3664. [47] Glinos, K. N., & Malone, M. F. (1985). Design of sidestream distillation columns. Industrial & Engineering Chemistry Process Design and Development, 24(3), 822-828. [48] Tedder, D. W.; Rudd, D. F., Parametric Studies in Industrial Distillation .1. Design Comparisons. Aiche J 1978, 24, (2), 303-315. [49] Nishida, N.; Stephanopoulos, G.; Westerberg, A. W., A Review of Process Synthesis. Aiche J 1981, 27, (3), 321-351. [50] Chu, K.-T.; Cadoret, L.; Yu, C.-C.; Ward, J. D., A New Shortcut Design Method and Economic Analysis of Divided Wall Columns. Industrial & Engineering Chemistry Research 2011, 50, (15), 9221-9235. [51] Dung, N. T.; Thai, V. H., Effects of the ease of separation index (ESI) and feed composition on the selection of distillation configuration. Vietnam Journal of Chemistry 2018, 56, (4), 498-503. [52] Smith, Robin. Chemical process: design and integration. John Wiley & Sons, 2005. [53] Cui, C., Zhang, X., & Sun, J. (2019). Design and optimization of energy-efficient liquid-only side-stream distillation configurations using a stochastic algorithm. Chemical Engineering Research and Design, 145, 48-52. [54] Sholl, D. S., & Lively, R. P. (2016). Seven chemical separations to change the world. Nature, 532(7600), 435-437. [55] Ko, M. S., Na, S., Cho, J., & Kim, H. (2002). Simulation of the aromatic recovery process by extractive distillation. Korean Journal of Chemical Engineering, 19(6), 996-1000. [56] Kiss, A. A., & Rewagad, R. R. (2011). Energy efficient control of a BTX dividing-wall column. Computers & Chemical Engineering, 35(12), 2896-2904. [57] Cabrera-Ruiz, J., Jiménez-Gutiérrez, A., & Segovia-Hernández, J. G. (2011). Assessment of the implementation of heat-integrated distillation columns for the separation of ternary mixtures. Industrial & engineering chemistry research, 50(4), 2176-2181. [58] Seider, W. D., Seader, J. D., & Lewin, D. R. (2009). PRODUCT & PROCESS DESIGN PRINCIPLES: SYNTHESIS, ANALYSIS AND EVALUATION, (With CD). John Wiley & Sons. [59] Cui, C., Liu, S., & Sun, J. (2018). Optimal selection of operating pressure for distillation columns. Chemical Engineering Research and Design, 137, 291-307. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85636 | - |
| dc.description.abstract | 在本篇論文中,研究了熱整合複雜蒸餾塔序列作為熱耦合蒸餾的替代方案,以降低三元無共沸蒸餾系統之成本和能耗。對兩種工業相關的六碳及七碳脂肪烴混合物和七種三元無共沸混合物在十種進料組成下的蒸餾配置進行了優化和比較。 研究結果顯示,熱整合複雜蒸餾塔序列在兩種工業相關混合物的分離表現都優於隔板牆蒸餾塔。熱整合複雜蒸餾塔序列與傳統蒸餾塔序列相比,成本降低了13.0% (MCM混合物)以及17.2% (LMC混合物),而隔板牆蒸餾塔與傳統蒸餾塔序列相比,成本降低了1.7% (MCM混合物) 和7.1% (LMC混合物)。七種三元無共沸液體混合物在十種進料組成下(共70例)的結果顯示,如果不考慮熱整合,70例中有39例隔板牆蒸餾塔有最低總成本,與成本較低的傳統蒸餾塔序列相比,平均可以節省19.1%的總成本。如果考慮熱整合,則在70 例中有49例熱整合複雜蒸餾塔序列有最低總成本,僅有11例隔板牆蒸餾塔有最低成本,與成本較低的傳統蒸餾塔序列相比,平均可以節省21.0%的總成本。研究結果顯示,工業界應考慮熱整合複雜蒸餾塔序列作為隔板牆蒸餾塔的替代方案,以減少多元混合物蒸餾過程中的能耗。 在本篇論文中,我們比較了熱整合複雜蒸餾塔序列與其它熱整合側流蒸餾塔序列在分離苯/甲苯/對二甲苯混合物的表現。由研究結果得知,複雜蒸餾塔序列較易被熱整合,因此熱整合複雜蒸餾塔序列在所有熱整合側流蒸餾塔序列中有最低成本。 | zh_TW |
| dc.description.abstract | In this work, stacked complex sequences (SCSs) are studied as an alternative to thermal coupling for reducing cost and energy consumption in ternary zeotropic separations. Distillation configurations are optimized and compared for two industrially relevant C6-C7 aliphatic hydrocarbon mixtures and seven ternary zeotropic mixtures at ten feed compositions. The results show that SCSs outperform dividing-wall columns (DWCs) in both industrial-relevant cases, reducing cost relative to the conventional sequence by 13.0% (MCM) and 17.2% (LMC) compared with 1.7% (MCM) and 7.1% (LMC) for DWCs. Results for seven liquid mixtures at ten feed compositions for each mixture (70 cases) show that if column stacking (CS) is not considered, DWCs are preferred in 39 out of 70 cases, saving on average 19.1% compared to the preferable conventional (direct or indirect) sequence. However, if CS is permitted, SCSs are preferred in 48 out of 70 cases saving on average 21.0% compared to the preferable conventional sequence. DWCs are preferred in only 9 cases. This suggests that SCSs should be given serious consideration as an alternative to DWCs for reducing energy consumption in multicomponent distillation processes. Besides, SCS is compared with other stacked side-stream sequences for the separation of mixture BTX. Result show that complex sequence can be easily stacked and has the lowest TAC among all stacked side-stream sequences. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:20:14Z (GMT). No. of bitstreams: 1 U0001-2306202213583900.pdf: 6107462 bytes, checksum: 6c97911e234f3c7b26dfa8e47bdd5ed4 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Overview 1 1.2 Literature Survey 3 1.2.1 Thermally Coupled Distillation Sequences (TCDSs) 4 1.2.2 Dividing-Wall Columns (DWCs) 6 1.2.3 Column Stacking (CS) 7 1.2.4 Complex Distillation Sequences 9 1.3 Motivation 10 1.4 Thesis Organization 11 Chapter 2 Methods 12 2.1 Process Simulation 12 2.2 Process Optimization 14 2.3 Distillation Configurations 18 Chapter 3 Case Studies 22 3.1 Industrial-Relevant Mixture MCM (methylcyclopentane / cyclohexane / methylcyclohexane) 22 3.2 Industrial-Relevant Multicomponent C6 Alkane Mixture (Mixture LMC) 23 3.3 Hypothetical Zeotropic Ternary Mixtures 25 Chapter 4 Results 29 4.1 Detailed Example: Industrial Mixture MCM 29 4.1.1 Unstacked and Stacked Conventional Sequences 32 4.1.2 Unstacked and Stacked Complex Sequences 39 4.1.3 Dividing-Wall Columns 43 4.1.4 Summary of Mixture MCM 46 4.2 Detailed Example: Industrial Mixture LMC 47 4.2.1 Unstacked and Stacked Conventional Indirect Sequence 51 4.2.2 Unstacked and Stacked Complex Indirect Sequences 54 4.2.3 Prefractionator Configuration (PC), Side-Stream Column (SSC), and DWCM 56 4.2.4 Scenario 2: Enhanced Product Purity Requirements 60 4.2.5 Summary of Mixture LMC 65 4.3 Detailed Example: Mixture TEX 66 4.3.1 Conventional Direct Sequence (DS) 67 4.3.2 Conventional Direct Sequence with Column Stacking (DH) 68 4.3.3 Complex Direct Sequence without Column Stacking (CDS) 69 4.3.4 Dividing-wall Column with Middle Partition (DWCM) 71 4.3.5 Complex Direct Sequence with Column Stacking (CDSH) 72 4.3.6 Discussion of Alternatives for TEX Separation 73 4.4 Mixtures with ESI nearly Equal to One (EPB/PHH/BTX) 77 4.5 Mixtures with ESI Larger than One (BPP/PBB) 81 4.6 Mixtures with ESI Less than One (HTX/BBP) 85 4.7 Discussion 88 4.8 Extension to Other Sidestream Stacked Sequences 94 Chapter 5 Conclusions 103 REFERENCE 106 Appendix A. TAC Calculation 115 Appendix B. Decision Variables 123 Appendix C. Thermodynamic Models and Parameters 125 | |
| dc.language.iso | en | |
| dc.subject | 側流蒸餾塔 | zh_TW |
| dc.subject | 熱整合 | zh_TW |
| dc.subject | 隔板牆蒸餾塔 | zh_TW |
| dc.subject | 蒸餾 | zh_TW |
| dc.subject | 側流蒸餾塔 | zh_TW |
| dc.subject | 熱整合 | zh_TW |
| dc.subject | 蒸餾 | zh_TW |
| dc.subject | 隔板牆蒸餾塔 | zh_TW |
| dc.subject | side-stream columns | en |
| dc.subject | distillation | en |
| dc.subject | side-stream columns | en |
| dc.subject | heat integration | en |
| dc.subject | dividing-wall columns | en |
| dc.subject | distillation | en |
| dc.subject | heat integration | en |
| dc.subject | dividing-wall columns | en |
| dc.title | 三元無共沸蒸餾系統之熱整合複雜蒸餾塔序列 | zh_TW |
| dc.title | Stacked complex sequences for ternary zeotropic distillation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0001-5649-022X | |
| dc.contributor.oralexamcommittee | 錢義隆(I-Lung Chien),陳誠亮(Cheng-Liang Chen),余柏毅(Bor-Yih Yu) | |
| dc.subject.keyword | 蒸餾,側流蒸餾塔,熱整合,隔板牆蒸餾塔, | zh_TW |
| dc.subject.keyword | distillation,side-stream columns,heat integration,dividing-wall columns, | en |
| dc.relation.page | 126 | |
| dc.identifier.doi | 10.6342/NTU202201072 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-06-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2306202213583900.pdf | 5.96 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
