請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85626完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊振義(Jehn-Yih Juang) | |
| dc.contributor.author | Siang-Heng Wang | en |
| dc.contributor.author | 王祥恒 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:20:01Z | - |
| dc.date.copyright | 2022-07-22 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-28 | |
| dc.identifier.citation | Alberto M C R, Wassmann R, Hirano T, Miyata A, Hatano R, Kumar A, Padre A and Amante M 2011 Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines Agricultural Water Management 98 1417-30 Almagro M, López J, Querejeta J I and Martínez-Mena M 2009 Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem Soil Biology and Biochemistry 41 594-605 Alter R E, Im E-S and Eltahir E A B 2015 Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation Nature Geoscience 8 763 Altieri M A, Nicholls C I, Henao A and Lana M A 2015 Agroecology and the design of climate change-resilient farming systems Agronomy for Sustainable Development 35 869-90 Anapalli S S, Fisher D K, Reddy K N, Wagle P, Gowda P H and Sui R 2018 Quantifying soybean evapotranspiration using an eddy covariance approach Agricultural Water Management 209 228-39 Baldocchi D 1994 A comparative study of mass and energy exchange over a closed C3 (wheat) and an open C4 (corn) canopy: I. The partitioning of available energy into latent and sensible heat exchange Agricultural and Forest Meteorology 67 191-220 Berg A, Lintner B R, Findell K L, Malyshev S, Loikith P C and Gentine P 2014 Impact of Soil Moisture–Atmosphere Interactions on Surface Temperature Distribution Journal of Climate 27 7976-93 Bernacchi C J and VanLoocke A 2015 Annual Review of Plant Biology, Vol 66, ed S S Merchant pp 599-622 Bezner Kerr R, T. Hasegawa, R. Lasco, I. Bhatt, D. Deryng, A. Farrell, H. Gurney-Smith, H. Ju, S. Lluch-Cota, F. Meza, G. Nelson, H. Neufeldt, and P. Thornton 2022 Food, fibre, and other ecosystem products Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ed H O Pörtner, M Tignor, E S Poloczanska, K Mintenbeck, A Alegría, M Craig, S Langsdorf, S Löschke, V Möller, A Okem, B Rama (Cambridge: Cambridge University Press) In Press Bhagat R M, Ahmed K Z, Gupta N, Baruah R D, Wijeratne M A, Bore J K, Nyabundi D W, Han W, Li X, Yan P and Ahammed G J 2016 Report of the Working Group on Climate Change of the FAO Intergovernmental Group on Tea (Rome: FAO) Campbell G S and Norman J M 1998 An introduction to environmental biophysics (New York: Springer) Carr M K V 2010 The role of water in the growth of the tea (Camellia sinensis) crop: a synthesis of research in eastern Africa. 2. Water productivity Experimental Agriculture 46 351-79 Childs S W and Flint L E 1987 Effect of shadecards, shelterwoods, and clearcuts on temperature and moisture environments Forest Ecology and Management 18 205-17 Constantin J, Raynal H, Casellas E, Hoffmann H, Bindi M, Doro L, Eckersten H, Gaiser T, Grosz B, Haas E, Kersebaum K-C, Klatt S, Kuhnert M, Lewan E, Maharjan G R, Moriondo M, Nendel C, Roggero P P, Specka X, Trombi G, Villa A, Wang E, Weihermüller L, Yeluripati J, Zhao Z, Ewert F and Bergez J-E 2019 Management and spatial resolution effects on yield and water balance at regional scale in crop models Agricultural and Forest Meteorology 275 184-95 da Silva A P, Kay B D and Perfect E 1994 Characterization of the Least Limiting Water Range of Soils Soil Science Society of America Journal 58 1775-81 Dai A, Trenberth K E and Karl T R 1999 Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range Journal of Climate 12 2451-73 Davis K T, Dobrowski S Z, Holden Z A, Higuera P E and Abatzoglou J T 2019 Microclimatic buffering in forests of the future: the role of local water balance Ecography 42 1-11 De Costa W A J M, Mohotti A J and Wijeratne M A 2007 Ecophysiology of tea Brazilian Journal of Plant Physiology 19 299-332 De Frenne P, Rodríguez-Sánchez F, Coomes D A, Baeten L, Verstraeten G, Vellend M, Bernhardt-Römermann M, Brown C D, Brunet J, Cornelis J, Decocq G M, Dierschke H, Eriksson O, Gilliam F S, Hédl R, Heinken T, Hermy M, Hommel P, Jenkins M A, Kelly D L, Kirby K J, Mitchell F J G, Naaf T, Newman M, Peterken G, Petřík P, Schultz J, Sonnier G, Van Calster H, Waller D M, Walther G-R, White P S, Woods K D, Wulf M, Graae B J and Verheyen K 2013 Microclimate moderates plant responses to macroclimate warming Proceedings of the National Academy of Sciences 110 18561-5 de Lima C Z, Buzan J R, Moore F C, Baldos U L C, Huber M and Hertel T W 2021 Heat stress on agricultural workers exacerbates crop impacts of climate change Environmental Research Letters 16 044020 Dexter A R 2004 Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth Geoderma 120 201-14 Diro G T and Sushama L 2017 The Role of Soil Moisture–Atmosphere Interaction on Future Hot Spells over North America as Simulated by the Canadian Regional Climate Model (CRCM5) Journal of Climate 30 5041-58 Environmental Systems Research Institute, Inc. (ESRI) 2021 (Available at: https://www.arcgis.com/home/item.html?id=b9b1b422198944fbbd5250b3241691b6) Eshonkulov R, Poyda A, Ingwersen J, Pulatov A and Streck T 2019 Improving the energy balance closure over a winter wheat field by accounting for minor storage terms Agricultural and Forest Meteorology 264 283-96 Facelli J M and Pickett S T A 1991 Plant litter: Its dynamics and effects on plant community structure The Botanical Review 57 1-32 Famuwagun I B 2016 Cacao developmental pattern, soil temperature and moisture variation as affected by shade and dry season drip irrigation Journal of Experimental Agriculture International 12 1-6 Flerchinger G N and Pierson F B 1991 Modeling plant canopy effects on variability of soil temperature and water Agricultural and Forest Meteorology 56 227-46 Flerchinger G N, Sauer T J and Aiken R A 2003 Effects of crop residue cover and architecture on heat and water transfer at the soil surface Geoderma 116 217-33 Frazer G, Canham C D and Lertzman K 1999 Gap light analyzer (GLA), version 2.0: imaging software to extract canopy structure and gap light indices from true-colour fisheye photographs Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation Institute of Ecosystem Studies New York (www.caryinstitute.org/science/our-scientists/dr-charles-d-canham/gap-light-analyzer-gla) Gail Smith B, Stephens W, Burgess P J and Carr M K V 1993 Effects of Light, Temperature, Irrigation and Fertilizer on Photosynthetic Rate in Tea (Camellia Sinensis) Experimental Agriculture 29 291-306 Gao L, Zhao P, Kang S, Li S, Tong L, Ding R and Lu H 2019 Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard Agricultural Water Management 226 105817 Gutiérrez M V and Meinzer F C 1994 Energy balance and latent heat flux partitioning in coffee hedgerows at different stages of canopy development Agricultural and Forest Meteorology 68 173-86 Ham J M and Heilman J L 1991 Aerodynamic and surface resistances affecting energy transport in a sparse crop Agricultural and Forest Meteorology 53 267-84 Ham J M and Kluitenberg G J 1993 Positional variation in the soil energy balance beneath a row-crop canopy Agricultural and Forest Meteorology 63 73-92 Handmaker O, Keeler B L and Milz D 2021 What type of value information is most valuable to stakeholders? Multi-sector perspectives on the utility and relevance of water valuation information Environmental Science & Policy 115 47-60 Hirsch A L, Prestele R, Davin E L, Seneviratne S I, Thiery W and Verburg P H 2018 Modelled biophysical impacts of conservation agriculture on local climates Global Change Biology 24 4758-74 Kesavan P C and Swaminathan M S 2008 Strategies and models for agricultural sustainability in developing Asian countries Philosophical Transactions of the Royal Society B: Biological Sciences 363 877-91 Klute A 1986 Methods of Soils Analysis: Physical and Mineralogical Methods: ASA) Kremen C and Miles A 2012 Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs Ecology and Society 17 Kustas W P, Agam N, Alfieri J G, McKee L G, Prueger J H, Hipps L E, Howard A M and Heitman J L 2018 Below canopy radiation divergence in a vineyard: implications on interrow surface energy balance Irrigation Science 37 407-29 Legates D R, Mahmood R, Levia D F, DeLiberty T L, Quiring S M, Houser C and Nelson F E 2011 Soil moisture: A central and unifying theme in physical geography Progress in Physical Geography 35 65-86 Liang W-L, Hung F-X, Chan M-C and Lu T-H 2014 Spatial structure of surface soil water content in a natural forested headwater catchment with a subtropical monsoon climate Journal of Hydrology 516 210-21 Lin B B 2007 Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture Agricultural and Forest Meteorology 144 85-94 Lin B B 2010 The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems Agricultural and Forest Meteorology 150 510-8 Liu S, Yang J Y, Zhang X Y, Drury C F, Reynolds W D and Hoogenboom G 2013 Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China Agricultural Water Management 123 32-44 Loeb N G, Su W and Kato S 2016 Understanding Climate Feedbacks and Sensitivity Using Observations of Earth’s Energy Budget Current Climate Change Reports 2 170-8 Lott J E, Ong C K and Black C R 2009 Understorey microclimate and crop performance in a Grevillea robusta-based agroforestry system in semi-arid Kenya Agricultural and Forest Meteorology 149 1140-51 Lotter D W, Seidel R and Liebhardt W 2003 The performance of organic and conventional cropping systems in an extreme climate year American Journal of Alternative Agriculture 18 146-54 Maeder P, Fliessbach A, Dubois D, Gunst L, Fried P and Niggli U 2002 Soil Fertility and Biodiversity in Organic Farming Science 296 1694-7 Mahmood R, Pielke Sr. R A, Hubbard K G, Niyogi D, Dirmeyer P A, McAlpine C, Carleton A M, Hale R, Gameda S, Beltrán-Przekurat A, Baker B, McNider R, Legates D R, Shepherd M, Du J, Blanken P D, Frauenfeld O W, Nair U S and Fall S 2014 Land cover changes and their biogeophysical effects on climate International Journal of Climatology 34 929-53 Meyers T P and Hollinger S E 2004 An assessment of storage terms in the surface energy balance of maize and soybean Agricultural and Forest Meteorology 125 105-15 Michot D, Benderitter Y, Dorigny A, Nicoullaud B, King D and Tabbagh A 2003 Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography Water Resources Research 39 Mohotti A J and Lawlor D W 2002 Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field Journal of Experimental Botany 53 313-22 Or D, Lehmann P, Shahraeeni E and Shokri N 2013 Advances in Soil Evaporation Physics—A Review Vadose Zone Journal 12 Özkan U and Gökbulak F 2017 Effect of vegetation change from forest to herbaceous vegetation cover on soil moisture and temperature regimes and soil water chemistry CATENA 149 158-66 Payero J O and Irmak S 2013 Daily energy fluxes, evapotranspiration and crop coefficient of soybean Agricultural Water Management 129 31-43 Prematilake K G, Froud-Williams R J and Ekanayake P B 2004 Weed infestation and tea growth under various weed management methods in a young tea (Camellia sinensis[L.] Kuntze) plantation Weed Biology and Management 4 239-48 Puma M J and Cook B I 2010 Effects of irrigation on global climate during the 20th century Journal of Geophysical Research: Atmospheres 115 Rabot E, Wiesmeier M, Schlüter S and Vogel H J 2018 Soil structure as an indicator of soil functions: A review Geoderma 314 122-37 Richardson A D, Keenan T F, Migliavacca M, Ryu Y, Sonnentag O and Toomey M 2013 Climate change, phenology, and phenological control of vegetation feedbacks to the climate system Agricultural and Forest Meteorology 169 156-73 Ritter E, Dalsgaard L and Einhorn K S 2005 Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark Forest Ecology and Management 206 15-33 Robinson D A, Campbell C S, Hopmans J W, Hornbuckle B K, Jones S B, Knight R, Ogden F, Selker J and Wendroth O 2008 Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review Vadose Zone Journal 7 358-89 Salama M A, Yousef K M and Mostafa A Z 2015 Simple equation for estimating actual evapotranspiration using heat units for wheat in arid regions Journal of Radiation Research and Applied Sciences 8 418-27 Schmitzberger I, Wrbka T, Steurer B, Aschenbrenner G, Peterseil J and Zechmeister H G 2005 How farming styles influence biodiversity maintenance in Austrian agricultural landscapes Agriculture, Ecosystems & Environment 108 274-90 Sridhar V and Anderson K A 2017 Human-induced modifications to land surface fluxes and their implications on water management under past and future climate change conditions Agricultural and Forest Meteorology 234-235 66-79 Suyker A E and Verma S B 2009 Evapotranspiration of irrigated and rainfed maize–soybean cropping systems Agricultural and Forest Meteorology 149 443-52 The National Land Surveying and Mapping Center (NLSC) 2021 (Available at: http://maps.nlsc.gov.tw/S_Maps/wmts) Trenberth K E, Fasullo J T and Kiehl J 2009 Earth's global energy budget Bulletin of the American Meteorological Society 90 311-23 Tscharntke T, Clough Y, Bhagwat S A, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E and Wanger T C 2011 Multifunctional shade-tree management in tropical agroforestry landscapes – a review Journal of Applied Ecology 48 619-29 Valladares F, Laanisto L, Niinemets Ü and Zavala M A 2016 Shedding light on shade: ecological perspectives of understorey plant life Plant Ecology & Diversity 9 237-51 Villalobos F J, Testi L and Moreno-Perez M F 2009 Evaporation and canopy conductance of citrus orchards Agricultural Water Management 96 565-73 W. Todd R, L. Klocke N, W. Hergert G and M. Parkhurst A 1991 Evaporation from soil influenced by crop shading, crop residue, and wetting regime Transactions of the ASAE 34 461-0466 Wang K and Dickinson R E 2012 A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability Reviews of Geophysics 50 Wang L, Good S P and Caylor K K 2014 Global synthesis of vegetation control on evapotranspiration partitioning Geophysical Research Letters 41 6753-7 Wang S-H and Juang J-Y 2022 Quantifying the influence of management strategies on surface radiation budgets and energy patterns in tea fields Environmental Research Letters 17 034041 Xiao B and Bowker M A 2020 Moss-biocrusts strongly decrease soil surface albedo, altering land-surface energy balance in a dryland ecosystem Science of The Total Environment 741 140425 Zavaleta E S, Thomas B D, Chiariello N R, Asner G P, Shaw M R and Field C B 2003 Plants reverse warming effect on ecosystem water balance Proceedings of the National Academy of Sciences of the United States of America 100 9892-3 Zhang L, Li X, Yu J and Yao X 2018 Toward cleaner production: What drives farmers to adopt eco-friendly agricultural production? Journal of Cleaner Production 184 550-8 Zheng W, Wang S, Sprenger M, Liu B and Cao J 2019 Response of soil water movement and groundwater recharge to extreme precipitation in a headwater catchment in the North China Plain Journal of Hydrology 576 466-77 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85626 | - |
| dc.description.abstract | 在農田中,從植被到地景尺度的地表能量平衡在地表和大氣的交互作用中扮演著必要的關鍵角色,它明顯地受到農民的田間管理和施作措施的影響。這些田間施作措施影響了氣象參數、土壤溫度和土壤水分。為了瞭解農民的田間施作措施如何影響多年生農作物的田間微氣候,本研究在北台灣的淺山地區選擇兩個相鄰但由不同農民管理的茶園(一個是慣行管理的茶園,另一個是有機認證的茶園),進行長期的輻射預算、能量收支、樹冠層溫度、蒸氣壓差、土壤溫度和土壤水分的觀測。結果顯示,輻射預算的差異很小(僅占淨輻射的1%)。然而,能量收支因為兩個茶園高度分歧的管理方式而具有顯著差異(有機茶園比慣行茶園少了10%的可感熱通量、多了25%的潛熱通量)。除此之外,與有機茶園相比,慣行茶園的土壤日夜溫差較高(0.45°C),而有機茶園的土壤水分流失的速度較快(-0.93% d-1),慣行茶園則是(-0.46% d-1),這個結果呼應了慣行茶園具有較多的可感熱通量以及有機茶園具有較多的潛熱通量。本研究的發現指出,有機的茶園管理方式可以降低可感熱通量的能量分配,並且增加潛熱通量的能量分配,因此能減少日夜的溫度變化以及降低蒸氣壓差。在長期的能量通量方面,有機的管理方式可以減少地面的加熱效果。本研究發現,在較小的時間尺度下,慣行的管理方式明顯增加了可感熱通量(中午時可達51.5%),相較於有機的管理方式僅增加9.6%。本研究提供了在不同的茶園管理方式之下的全面的基礎數據,可作為水資源保育的參考資料、從微小到區域尺度的氣候模式的定量分析的參考數據、評估在不同的未來氣候情境下,農民工作時的熱壓力指數的基礎資訊。 | zh_TW |
| dc.description.abstract | The surface energy balance from canopy to landscape scales in crop fields plays an essential role in surface-atmosphere interactions. It is strongly influenced by the management strategies and field practices of farmers. These practices also affect the micrometeorological parameters, including energy partitions, soil temperature, and soil moisture. To characterize how different agricultural practices of farmers affect the microenvironment in perennial crop fields, a long-term observation of the radiation budget, energy components, canopy temperature, vapor pressure deficit, soil temperature, and soil water content was conducted in two neighboring tea fields with different management strategies (a conventional operation field and an organic-certified field managed by different farmers) in a hilly terrain area in northern Taiwan. The results showed that the difference in the radiation budget in these two tea fields was minor (only 1% for net radiation). However, the differences in the energy components were more significant (sensible heat was 10% lower and latent heat was 25% higher in the organic-certified field than in the conventional field) due to highly distinct practices in these two fields. Furthermore, the higher diurnal soil temperature (0.45 °C) contributes to the more considerable sensible heat flux in the conventional field. On the other hand, in the organic-certified field, the faster-decreasing rate of (-0.93% d-1) soil water content is consistent with the greater latent heat flux. This finding implies that the organic-certified application could lower the partitioning of sensible heat flux and increase the latent heat flux, thereby reducing the temperature variation and decreasing the vapor pressure deficit. The organic-certified field reduced the surface heating in terms of the long-term energy patterns. The findings of this study also indicate that field practices in the conventional field can increase the sensible heat flux (51.5% at noontime) on short-term time scales, while it is only 9.6% in the organic-certified field. Furthermore, this study offers primary data in the comprehensive understanding of tea field practices, a scientific basis for in-field water conservation, quantitative analysis for modeling from micro to regional scales, and essential information for estimating heat stress index for field workers under different future climate scenarios. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:20:01Z (GMT). No. of bitstreams: 1 U0001-2506202215525700.pdf: 9437711 bytes, checksum: 9962200143951e912b4a2ba51f759427 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgment i Abstract ii Abstract in Chinese iv Content v List of Figures vii List of Tables ix 1. Introduction 1 1.1 References 6 2. Field Survey and Pre-experimental Test 8 2.1 Summary of Pre-experimental Study Site and Methods 9 2.1.1 Study site 9 2.1.2 Canopy characteristics of the pre-experimental tea fields 9 2.1.3 Energy flux measurement 10 2.2 Results and Discussion of Pre-experimental Measurement 11 2.2.1 Results of pre-experimental test 11 2.2.2 Self-criticism 12 2.2.3 Fields for formal measurement 13 2.3 Summary 14 2.4 References 23 3. Quantifying the Influence of Management Strategies on Surface Radiation Budgets and Energy Patterns in Tea Fields 24 3.1 Graphical Abstract 25 3.3 Abstract 26 3.4 Introduction 28 3.5 Study Site and Methods 31 3.5.1 Study site 31 3.5.2 Characteristics of the tea fields 33 3.5.3 Eddy-covariance and environmental measurements 34 3.6 Results and Discussion 36 3.6.1 Field characteristics 36 3.6.2 Overall comparison of energy components 38 3.6.3 Energy components affected by different field management practices 40 3.6.4 Energy closure and energy components between different crops 43 3.7 Conclusion 44 3.8 References 57 4. Management Strategies Affect Soil Temperature and Soil Moisture in Tea Fields Through Soil Physical Property and Canopy Coverage 60 4.1 Abstract 61 4.2 Introduction 62 4.3 Study Site and Methods 65 4.3.1 Study site 65 4.3.2 Soil physical properties 67 4.3.3 Soil moisture and temperature measurement 68 4.3.4 ET measurement 69 4.4 Results and Discussion 70 4.4.1 Soil bulk density 70 4.4.2 Soil temperature 70 4.4.3 Soil moisture 72 4.4.4 ET 74 4.5 Conclusion 76 4.6 References 85 5. Conclusion 88 5.1 References 93 | |
| dc.language.iso | en | |
| dc.subject | 有機農業 | zh_TW |
| dc.subject | 土壤溫度 | zh_TW |
| dc.subject | 能量收支 | zh_TW |
| dc.subject | 多年生作物 | zh_TW |
| dc.subject | 有機農業 | zh_TW |
| dc.subject | 樹冠層結構 | zh_TW |
| dc.subject | 土壤溫度 | zh_TW |
| dc.subject | 能量收支 | zh_TW |
| dc.subject | 多年生作物 | zh_TW |
| dc.subject | 樹冠層結構 | zh_TW |
| dc.subject | canopy structure | en |
| dc.subject | energy partitions | en |
| dc.subject | perennial crop | en |
| dc.subject | organic agriculture | en |
| dc.subject | canopy structure | en |
| dc.subject | perennial crop | en |
| dc.subject | energy partitions | en |
| dc.subject | soil temperature | en |
| dc.subject | soil temperature | en |
| dc.subject | organic agriculture | en |
| dc.title | 探討田間管理在茶園中的能量收支和土壤水分的角色 | zh_TW |
| dc.title | Investigating Role of Field Management on Energy Budgets and Soil Moisture in Tea Fields | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-7496-2611 | |
| dc.contributor.advisor-orcid | 莊振義(0000-0002-7890-0696) | |
| dc.contributor.oralexamcommittee | 羅敏輝(Min-Hui Lo),陳正平(Jen-Ping Chen),張聖琳(Sheng-Lin Chang),黃倬英(Cho-Ying Huang),陳奕穎(Yi-Ying Chen),張世杰(Shih-Chieh Chang),李明旭(Ming-Hsu Li) | |
| dc.subject.keyword | 樹冠層結構,有機農業,多年生作物,能量收支,土壤溫度, | zh_TW |
| dc.subject.keyword | canopy structure,organic agriculture,perennial crop,energy partitions,soil temperature, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202201114 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-06-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 氣候變遷與永續發展國際學位學程 | zh_TW |
| dc.date.embargo-lift | 2023-07-01 | - |
| 顯示於系所單位: | 氣候變遷與永續發展國際學位學程(含碩士班、博士班) | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2506202215525700.pdf | 9.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
